A slow migrating variant of human serum albumin, present in lower amount than the normal protein, has been detected by routine clinical electrophoresis at pH 8.6 in two members of a family living in Asola (Lombardia, Italy). Ion-exchange chromatography of serum samples failed to separate the normal protein from the variant. Analysis of the albumin peak by SDS/PAGE revealed that the variant had a lower apparent molecular mass than its normal counterpart. However, the abnormal band was not detectable when the separation was performed under reducing conditions or when both albumins were carboxymethylated. Isoelectric-focusing analysis of CNBr fragments localized the mutation to fragment CNBr 3 (residues 124-298). This fragment was isolated on a preparative scale and subjected to tryptic digestion. Sequence determination of the abnormal tryptic peptide revealed that the variant arises from a Tyr140--> Cys substitution. This result was confirmed by DNA sequence analysis, which showed a single transition of TAT-->TGT at nucleotide position 5074. Despite the presence of an additional cysteine residue, several lines of evidence indicated that albumin Asola has no free -SH group; therefore, we propose the formation of a new S-S bond between Cys140 and Cys34, the only free sulphydryl group present in the normal protein. The relatively low level of the variant in serum and its abnormal mobility on cellulose acetate electrophoresis and SDS/PAGE are probably caused by a gross conformational change of the molecule induced by the new S-S bridge.

A genetic variant of albumin (albumin Asola; Tyr140-->Cys) with no free -SH group but with an additional disulfide bridge.

MINCHIOTTI, LORENZO;GALLIANO, MONICA;
1995-01-01

Abstract

A slow migrating variant of human serum albumin, present in lower amount than the normal protein, has been detected by routine clinical electrophoresis at pH 8.6 in two members of a family living in Asola (Lombardia, Italy). Ion-exchange chromatography of serum samples failed to separate the normal protein from the variant. Analysis of the albumin peak by SDS/PAGE revealed that the variant had a lower apparent molecular mass than its normal counterpart. However, the abnormal band was not detectable when the separation was performed under reducing conditions or when both albumins were carboxymethylated. Isoelectric-focusing analysis of CNBr fragments localized the mutation to fragment CNBr 3 (residues 124-298). This fragment was isolated on a preparative scale and subjected to tryptic digestion. Sequence determination of the abnormal tryptic peptide revealed that the variant arises from a Tyr140--> Cys substitution. This result was confirmed by DNA sequence analysis, which showed a single transition of TAT-->TGT at nucleotide position 5074. Despite the presence of an additional cysteine residue, several lines of evidence indicated that albumin Asola has no free -SH group; therefore, we propose the formation of a new S-S bond between Cys140 and Cys34, the only free sulphydryl group present in the normal protein. The relatively low level of the variant in serum and its abnormal mobility on cellulose acetate electrophoresis and SDS/PAGE are probably caused by a gross conformational change of the molecule induced by the new S-S bridge.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/443926
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact