The mechanical behavior of superelastic springs is investigated in this study. The goal is to evaluate the device response and to exploit the material superelastic behavior, main concerns being material and geometrical response nonlinearity. The investigation is made of two parts, i.e., an experimental campaign and a numerical model proposal. Experimental tests have been performed on superelastic SMA coil springs considering load history in tension and compression for three different spring geometrical configurations. Tested specimens experience a maximum elongation larger than the original spring axis length. The response is not symmetric and under compression it is affected by buckling instability. Nevertheless, experimental results show a very good superelastic behavior with no damage and with negligible residual displacements. Numerical analyses have been performed to reproduce the experimental campaign results. A simple finite element model is proposed. Experimental and numerical result agreement is very good. The numerical model turns out to be a powerful design tool even for the very complex geometrical and material nonlinear conditions under investigation. Hence, it is proposed as a useful tool for spring design validation and response prediction.
Theoretical and Experimental Investigation on SMA Superelastic Springs
AURICCHIO, FERDINANDO;
2011-01-01
Abstract
The mechanical behavior of superelastic springs is investigated in this study. The goal is to evaluate the device response and to exploit the material superelastic behavior, main concerns being material and geometrical response nonlinearity. The investigation is made of two parts, i.e., an experimental campaign and a numerical model proposal. Experimental tests have been performed on superelastic SMA coil springs considering load history in tension and compression for three different spring geometrical configurations. Tested specimens experience a maximum elongation larger than the original spring axis length. The response is not symmetric and under compression it is affected by buckling instability. Nevertheless, experimental results show a very good superelastic behavior with no damage and with negligible residual displacements. Numerical analyses have been performed to reproduce the experimental campaign results. A simple finite element model is proposed. Experimental and numerical result agreement is very good. The numerical model turns out to be a powerful design tool even for the very complex geometrical and material nonlinear conditions under investigation. Hence, it is proposed as a useful tool for spring design validation and response prediction.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.