d-Sotalol is not effective against myocardial ischemia-dependent ventricular fibrillation in the presence of elevated sympathetic activity. Most potassium channel blockers, such as d-sotalol, affect only one of the two components of Ik (Ikr) but not the other (Iks). Iks is activated by isoproterenol. An unopposed activation of Iks might account for the loss of anti-fibrillatory effect by d-sotalol in conditions of high sympathetic activity. METHODS: In nine anesthetized dogs we tested at constant heart rate (160 to 220 beats/min) the influences of left stellate ganglion stimulation on the monophasic action potential prolongation induced by d-sotalol. In two groups of isolated guinea pig ventricular myocytes we tested the effect of isoproterenol (10(-9) mol/liter) on the action potential duration at five pacing rates (from 0.5 to 2.5 Hz) in the absence (n = 6) and in the presence (n = 8) of d-sotalol. RESULTS: In control conditions, both in vivo and in vitro, adrenergic stimulation did not significantly change action potential duration. d-Sotalol prolonged both monophasic action potential duration in dogs and action potential duration of guinea pig ventricular myocytes by 19% to 24%. Adrenergic activation, either left stellate ganglion stimulation in vivo or isoproterenol in vitro, reduced by 40% to 60% the prolongation of action potential duration produced by d-sotalol. CONCLUSIONS: Sympathetic activation counteracts the effects of potassium channel blockers on the duration of repolarization and may impair their primary antifibrillatory mechanism. An intriguing clinical implication is that potassium channel blockers may not offer effective protection from malignant ischemic arrhythmias that occur in a setting of elevated sympathetic activity.

Sympathetic activation, ventricular repolarization and Ikr blockade: implications for the antifibrillatory efficacy of potassium channel blocking agents

VANOLI, EMILIO;PRIORI, SILVIA GIULIANA;Napolitano C;SCHWARTZ, PETER
1995-01-01

Abstract

d-Sotalol is not effective against myocardial ischemia-dependent ventricular fibrillation in the presence of elevated sympathetic activity. Most potassium channel blockers, such as d-sotalol, affect only one of the two components of Ik (Ikr) but not the other (Iks). Iks is activated by isoproterenol. An unopposed activation of Iks might account for the loss of anti-fibrillatory effect by d-sotalol in conditions of high sympathetic activity. METHODS: In nine anesthetized dogs we tested at constant heart rate (160 to 220 beats/min) the influences of left stellate ganglion stimulation on the monophasic action potential prolongation induced by d-sotalol. In two groups of isolated guinea pig ventricular myocytes we tested the effect of isoproterenol (10(-9) mol/liter) on the action potential duration at five pacing rates (from 0.5 to 2.5 Hz) in the absence (n = 6) and in the presence (n = 8) of d-sotalol. RESULTS: In control conditions, both in vivo and in vitro, adrenergic stimulation did not significantly change action potential duration. d-Sotalol prolonged both monophasic action potential duration in dogs and action potential duration of guinea pig ventricular myocytes by 19% to 24%. Adrenergic activation, either left stellate ganglion stimulation in vivo or isoproterenol in vitro, reduced by 40% to 60% the prolongation of action potential duration produced by d-sotalol. CONCLUSIONS: Sympathetic activation counteracts the effects of potassium channel blockers on the duration of repolarization and may impair their primary antifibrillatory mechanism. An intriguing clinical implication is that potassium channel blockers may not offer effective protection from malignant ischemic arrhythmias that occur in a setting of elevated sympathetic activity.
1995
The Cardiovascular & Respiratory Systems category covers resources concerned with all aspects of cardiovascular and thoracic surgery and respiratory diseases. Topics include circulation, cardiovascular technology and measurement, cardiovascular pharmacology and therapy, hypertension, heart and lung transplantation, arteries, arteriosclerosis, thrombosis, angiology, perfusion, stroke, as well as all types of respiratory and lung diseases.
Sì, ma tipo non specificato
Inglese
Internazionale
STAMPA
25
1609
1614
SYMPATHETIC ACTIVITY; antiarrhythmic agents
8
info:eu-repo/semantics/article
262
Vanoli, Emilio; Priori, SILVIA GIULIANA; Nakagawa, H; Hirao, K; Napolitano, C; Diehl, L; Lazzara, R; Schwartz, Peter
1 Contributo su Rivista::1.1 Articolo in rivista
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/444664
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact