In this paper we define Dual-Compatible (DC) T-splines, and we prove that Analysis-Suitable (AS) T-splines are Dual-Compatible. We show that the classical construction of a dual basis for tensor-product T-splines easily generalizes to DC T-spline spaces, and we discuss in the last section of the paper how it paves the way to a mathematical theory of AS T-splines.
Analysis-Suitable T-splines are Dual-Compatible
SANGALLI, GIANCARLO
2012-01-01
Abstract
In this paper we define Dual-Compatible (DC) T-splines, and we prove that Analysis-Suitable (AS) T-splines are Dual-Compatible. We show that the classical construction of a dual basis for tensor-product T-splines easily generalizes to DC T-spline spaces, and we discuss in the last section of the paper how it paves the way to a mathematical theory of AS T-splines.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.