Mutant forms of human serum albumin have been detected on the basis of their abnormal electrophoretic mobility which is either faster or slower than that of normal albumin. In the present work we have studied the structure of a slow variant, referred to as albumin Ge/Ct, in order to define the cause of its genetic abnormality. The protein was isolated from the serum of a young healthy woman homozygous for the variant. Analysis of CNBr fragments by isoelectric focusing allowed us to localize the mutation to the COOH-terminal region of the molecule (residues 549-585). This fragment was isolated on a preparative scale and subjected to tryptic digestion. All tryptic peptides were purified by reverse-phase high performance liquid chromatography and characterized. Sequential analysis of three abnormal peptides revealed that albumin Ge/Ct has a shortened chain with the following COOH-terminal sequence: Leu-Val-Ala-Ala-Ser-Lys580-Leu-Pro. The presence of an additional lysine residue accounts for the electrophoretic behavior of the variant. It is likely that the variant may be caused by a single base deletion in the structural gene, a Cyt in mRNA codon 580, and the consequent shift in reading frame.
Structural characterization of a chain termination mutant of human serum albumin.
GALLIANO, MONICA;MINCHIOTTI, LORENZO;IADAROLA, PAOLO;
1986-01-01
Abstract
Mutant forms of human serum albumin have been detected on the basis of their abnormal electrophoretic mobility which is either faster or slower than that of normal albumin. In the present work we have studied the structure of a slow variant, referred to as albumin Ge/Ct, in order to define the cause of its genetic abnormality. The protein was isolated from the serum of a young healthy woman homozygous for the variant. Analysis of CNBr fragments by isoelectric focusing allowed us to localize the mutation to the COOH-terminal region of the molecule (residues 549-585). This fragment was isolated on a preparative scale and subjected to tryptic digestion. All tryptic peptides were purified by reverse-phase high performance liquid chromatography and characterized. Sequential analysis of three abnormal peptides revealed that albumin Ge/Ct has a shortened chain with the following COOH-terminal sequence: Leu-Val-Ala-Ala-Ser-Lys580-Leu-Pro. The presence of an additional lysine residue accounts for the electrophoretic behavior of the variant. It is likely that the variant may be caused by a single base deletion in the structural gene, a Cyt in mRNA codon 580, and the consequent shift in reading frame.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.