The main problem in efficiently building robust fuzzy-neural models of nonlinear systems lies in the difficulty to define a "meaningful" fuzzy rule-base. Our approach to the solution of such a problem is based on a hybrid method which integrates fuzzy systems with qualitative models. We introduce qualitative models to exploit the available, although incomplete, a priori physical knowledge on the system with the goal to infer, through qualitative simulation, all of its possible behaviors.We show here that a rule-base, which captures all of the distinctions in the system states, is automatically generated by encoding the knowledge of the system dynamics described by the outcomes of its qualitative simulation. Such a rule-base properly initializes a fuzzy identifier, which is then tuned to a set of experimental data. Our method has shown good performance when applied both as a predictor and as a simulator.
How to improve fuzzy-neural system modeling by means of qualitative simulation
BELLAZZI, RICCARDO;GUGLIELMANN, RAFFAELLA;
2000-01-01
Abstract
The main problem in efficiently building robust fuzzy-neural models of nonlinear systems lies in the difficulty to define a "meaningful" fuzzy rule-base. Our approach to the solution of such a problem is based on a hybrid method which integrates fuzzy systems with qualitative models. We introduce qualitative models to exploit the available, although incomplete, a priori physical knowledge on the system with the goal to infer, through qualitative simulation, all of its possible behaviors.We show here that a rule-base, which captures all of the distinctions in the system states, is automatically generated by encoding the knowledge of the system dynamics described by the outcomes of its qualitative simulation. Such a rule-base properly initializes a fuzzy identifier, which is then tuned to a set of experimental data. Our method has shown good performance when applied both as a predictor and as a simulator.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.