Context: The role of CNVs in male infertility is poorly defined, and only those linked to the Y chromosome have been the object of extensive research. Although it has been predicted that the X chromosome is also enriched in spermatogenesis genes, no clinically relevant gene mutations have been identified so far. Objectives: In order to advance our understanding of the role of X-linked genetic factors in male infertility, we applied high resolution X chromosome specific array-CGH in 199 men with different sperm count followed by the analysis of selected, patient-specific deletions in large groups of cases and normozoospermic controls. Results: We identified 73 CNVs, among which 55 are novel, providing the largest collection of X-linked CNVs in relation to spermatogenesis. We found 12 patient-specific deletions with potential clinical implication. Cancer Testis Antigen gene family members were the most frequently affected genes, and represent new genetic targets in relationship with altered spermatogenesis. One of the most relevant findings of our study is the significantly higher global burden of deletions in patients compared to controls due to an excessive rate of deletions/person (0.57 versus 0.21, respectively; p = 8.785x10(-6)) and to a higher mean sequence loss/person (11.79 Kb and 8.13 Kb, respectively; p = 3.435x10(-4)). Conclusions: By the analysis of the X chromosome at the highest resolution available to date, in a large group of subjects with known sperm count we observed a deletion burden in relation to spermatogenic impairment and the lack of highly recurrent deletions on the X chromosome. We identified a number of potentially important patient-specific CNVs and candidate spermatogenesis genes, which represent novel targets for future investigations.

High Resolution X Chromosome-Specific Array-CGH Detects New CNVs in Infertile Males.

ROSSI, ELENA
2012-01-01

Abstract

Context: The role of CNVs in male infertility is poorly defined, and only those linked to the Y chromosome have been the object of extensive research. Although it has been predicted that the X chromosome is also enriched in spermatogenesis genes, no clinically relevant gene mutations have been identified so far. Objectives: In order to advance our understanding of the role of X-linked genetic factors in male infertility, we applied high resolution X chromosome specific array-CGH in 199 men with different sperm count followed by the analysis of selected, patient-specific deletions in large groups of cases and normozoospermic controls. Results: We identified 73 CNVs, among which 55 are novel, providing the largest collection of X-linked CNVs in relation to spermatogenesis. We found 12 patient-specific deletions with potential clinical implication. Cancer Testis Antigen gene family members were the most frequently affected genes, and represent new genetic targets in relationship with altered spermatogenesis. One of the most relevant findings of our study is the significantly higher global burden of deletions in patients compared to controls due to an excessive rate of deletions/person (0.57 versus 0.21, respectively; p = 8.785x10(-6)) and to a higher mean sequence loss/person (11.79 Kb and 8.13 Kb, respectively; p = 3.435x10(-4)). Conclusions: By the analysis of the X chromosome at the highest resolution available to date, in a large group of subjects with known sperm count we observed a deletion burden in relation to spermatogenic impairment and the lack of highly recurrent deletions on the X chromosome. We identified a number of potentially important patient-specific CNVs and candidate spermatogenesis genes, which represent novel targets for future investigations.
2012
Molecular Biology & Genetics considers all aspects of basic and applied genetics, including molecular genetics, prokaryotic and eukaryotic gene expression, mechanisms of mutagenesis, structure, function and regulation of genetic material. Also included are resources concerned with clinical genetics, patterns of inheritance, genetic cause, and screening and treatment of disease. Resources dealing specifically with developmentally regulated gene expression, or with signal transduction pathways that modulate gene expression at the cellular level are excluded and are covered in the Cell and Developmental Biology category.
Sì, ma tipo non specificato
Inglese
Internazionale
ELETTRONICO
Epub 2012 Oct 9
Times Cited in Web of Science Core Collection: 10
COPY NUMBER, Y-CHROMOSOME, POLYMORPHISMS, AZOOSPERMIA, GENES, MEN, OLIGOZOOSPERMIA, COHORT, GENOME
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3467283/
9
info:eu-repo/semantics/article
262
Krausz, C; Giachini, C; Lo Giacco, D; Daguin, F; Chianese, C; Ars, E; Ruiz Castane, E; Forti, G; Rossi, Elena
1 Contributo su Rivista::1.1 Articolo in rivista
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/545448
Citazioni
  • ???jsp.display-item.citation.pmc??? 26
  • Scopus 78
  • ???jsp.display-item.citation.isi??? 58
social impact