A procedure for the short-term prediction of the thermal energy consumption of an hospital is shown in this paper. At first, linear ARX models are built to get information on the influence of the input variables on the output of the system. Therefore, non-linear models based on feedforward neural networks (NNARX) are built using the information provided by the linear estimate. The results obtained from the ARX and NNARX models are compared, concluding that NNARX models provide better results than ARX models, but the analysis of ARX models is necessary to obtain guidelines in the choice of the best regression vector as input for neural models.

Linear and neural dynamical models for energy flows prediction in facility systems

FROSINI, LUCIA;PETRECCA, GIOVANNI
2000-01-01

Abstract

A procedure for the short-term prediction of the thermal energy consumption of an hospital is shown in this paper. At first, linear ARX models are built to get information on the influence of the input variables on the output of the system. Therefore, non-linear models based on feedforward neural networks (NNARX) are built using the information provided by the linear estimate. The results obtained from the ARX and NNARX models are compared, concluding that NNARX models provide better results than ARX models, but the analysis of ARX models is necessary to obtain guidelines in the choice of the best regression vector as input for neural models.
2000
978-1-4471-1155-9
978-1-4471-0509-1
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/566562
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact