In this work, we consider the non-reactive fully elastic Boltzmann equations for mixtures in the diffusive scaling. We mainly use a Hilbert expansion of the distribution functions. After briefly recalling the H-theorem, the lower-order non trivial equality obtained from the Boltzmann equations leads to a linear functional equation in the velocity variable. This equation is solved thanks to the Fredholm alternative. Since we consider multicomponent mixtures, the classical techniques introduced by Grad cannot be applied, and we propose a new method to treat the terms involving particles with different masses.
Diffusion asymptotics of a kinetic model for gaseous mixtures
SALVARANI, FRANCESCO
2013-01-01
Abstract
In this work, we consider the non-reactive fully elastic Boltzmann equations for mixtures in the diffusive scaling. We mainly use a Hilbert expansion of the distribution functions. After briefly recalling the H-theorem, the lower-order non trivial equality obtained from the Boltzmann equations leads to a linear functional equation in the velocity variable. This equation is solved thanks to the Fredholm alternative. Since we consider multicomponent mixtures, the classical techniques introduced by Grad cannot be applied, and we propose a new method to treat the terms involving particles with different masses.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.