Interferons (IFNs) and tumor necrosis factor-α (TNF-α) cooperate in activating several inflammation-related genes, which sustain chronic inflammation in autoimmune thyroid disease (AITD). Much is known about the positive signaling of IFNs to activate gene expression in AITD, while the mechanisms by which IFNs negatively regulate genes remain less studied. While IFNs inhibit CXCL8 secretion in several human cell types, their effects on thyroid cells were not evaluated. Our aim was to study the interplay between TNF-α and type I or type II IFNs on CXCL8 secretion by human thyroid cells. CXCL8 was measured in supernatants of primary cultures of thyroid cells basally and after a 24-h incubation with TNF-α. CXCL8 was detected in thyroid cell supernatants in basal conditions (96.2±23.5 pg/mL) being significantly increased (784.7±217.3 pg/mL; P<0.0001 vs. basal) by TNF-α. Twenty-four hour incubation with IFN-γ or IFN-β or IFN-α dose dependently and significantly inhibited both basal and TNF-α-induced CXCL8 secretion. The degree of the inhibitory effect was IFN-γ>IFN-β>IFN-α. This study demonstrates that type I and type II IFNs downregulate both basal and TNF-α-induced CXCL8 secretion by human thyrocytes, IFN-γ being the most powerful inhibitor. Future studies aimed at a better comprehension of the interplay between CXCL8 and thyroid diseases appear worthwhile.
Type I and type II interferons inhibit both basal and tumor necrosis factor-α-induced CXCL8 secretion in primary cultures of human thyrocytes.
ROTONDI, MARIO;MAGRI, FLAVIA;CHIOVATO, LUCA
2013-01-01
Abstract
Interferons (IFNs) and tumor necrosis factor-α (TNF-α) cooperate in activating several inflammation-related genes, which sustain chronic inflammation in autoimmune thyroid disease (AITD). Much is known about the positive signaling of IFNs to activate gene expression in AITD, while the mechanisms by which IFNs negatively regulate genes remain less studied. While IFNs inhibit CXCL8 secretion in several human cell types, their effects on thyroid cells were not evaluated. Our aim was to study the interplay between TNF-α and type I or type II IFNs on CXCL8 secretion by human thyroid cells. CXCL8 was measured in supernatants of primary cultures of thyroid cells basally and after a 24-h incubation with TNF-α. CXCL8 was detected in thyroid cell supernatants in basal conditions (96.2±23.5 pg/mL) being significantly increased (784.7±217.3 pg/mL; P<0.0001 vs. basal) by TNF-α. Twenty-four hour incubation with IFN-γ or IFN-β or IFN-α dose dependently and significantly inhibited both basal and TNF-α-induced CXCL8 secretion. The degree of the inhibitory effect was IFN-γ>IFN-β>IFN-α. This study demonstrates that type I and type II IFNs downregulate both basal and TNF-α-induced CXCL8 secretion by human thyrocytes, IFN-γ being the most powerful inhibitor. Future studies aimed at a better comprehension of the interplay between CXCL8 and thyroid diseases appear worthwhile.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.