In this work, we generalize the theory of localized surface plasmons to the case of high-Tc cuprate superconductors, spatially confined in the form of small spherical particles. At variance from ordinary metals, cuprate superconductors are characterized by a low-energy bulk excitation known as the Josephson plasma wave (JPW), arising from interlayer tunneling of the condensate along the c axis. The effect of the JPW is revealed in a characteristic spectrum of surface excitations, which we call Josephson surface plasmons. Our results, which apply to any material with a strongly anisotropic electromagnetic response, are worked out in detail for the case of multilayered superconductors supporting both low-frequency (acoustic) and transverse-optical JPW. Spatial confinement of the Josephson plasma waves may represent a new degree of freedom to engineer their frequencies and to explore the link between interlayer tunneling and high-Tc superconductivity.
Josephson surface plasmons in spatially confined cuprate superconductors
ALPEGGIANI, FILIPPO;ANDREANI, LUCIO
2013-01-01
Abstract
In this work, we generalize the theory of localized surface plasmons to the case of high-Tc cuprate superconductors, spatially confined in the form of small spherical particles. At variance from ordinary metals, cuprate superconductors are characterized by a low-energy bulk excitation known as the Josephson plasma wave (JPW), arising from interlayer tunneling of the condensate along the c axis. The effect of the JPW is revealed in a characteristic spectrum of surface excitations, which we call Josephson surface plasmons. Our results, which apply to any material with a strongly anisotropic electromagnetic response, are worked out in detail for the case of multilayered superconductors supporting both low-frequency (acoustic) and transverse-optical JPW. Spatial confinement of the Josephson plasma waves may represent a new degree of freedom to engineer their frequencies and to explore the link between interlayer tunneling and high-Tc superconductivity.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.