This paper describes a new multiplexed label-free biosensor. The detection technology is based on nanostructured gold-polymer surfaces. These surfaces support surface plasmon resonance modes that can be probed by a miniaturized optical setup. The optical characterization of the sensing chip shows the sensitivity and the limit-of-detection to refractive index changes. Moreover, by studying the progressive adhesion of molecular monolayers of polyelectrolytes, the decay of the plasmonic mode electric field above the surface has been reconstructed. A multiplexed label-free biosensing device is then described and characterized in terms of sensitivity, lateral resolution, and sensitivity to a model biological assay. The sensitivity in imaging mode of the device is of the order of 10-6 refractive index units, while the measured lateral resolution is 6.25 μm within a field of view of several tenths of mm2, making the instrument unique in terms of multiplexing capability. Finally, the proof-of-concept application of the technology as a point-of-care diagnostic tool for an inflammatory marker is demonstrated.

Multiplexed label-free optical biosensor for medical diagnostics

FORNASARI, LUCIA;GIUDICATTI, SILVIA;MARABELLI, FRANCO;VALSESIA, ANDREA
2014-01-01

Abstract

This paper describes a new multiplexed label-free biosensor. The detection technology is based on nanostructured gold-polymer surfaces. These surfaces support surface plasmon resonance modes that can be probed by a miniaturized optical setup. The optical characterization of the sensing chip shows the sensitivity and the limit-of-detection to refractive index changes. Moreover, by studying the progressive adhesion of molecular monolayers of polyelectrolytes, the decay of the plasmonic mode electric field above the surface has been reconstructed. A multiplexed label-free biosensing device is then described and characterized in terms of sensitivity, lateral resolution, and sensitivity to a model biological assay. The sensitivity in imaging mode of the device is of the order of 10-6 refractive index units, while the measured lateral resolution is 6.25 μm within a field of view of several tenths of mm2, making the instrument unique in terms of multiplexing capability. Finally, the proof-of-concept application of the technology as a point-of-care diagnostic tool for an inflammatory marker is demonstrated.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/843468
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 46
social impact