We study in dimension 3 the motion of a solid with large deformations. The solid may be loaded on its surface by needles, rods, beams, shells, etc. Therefore, it is wise to choose a third gradient theory for the body. It is known that the stretch matrix of the polar decomposition has to be symmetric. This is an internal constraint, which introduces a reaction stress in the Piola–Kirchhoff–Boussinesq stress. We prove that there exists a motion that satisfies the complete equations of Mechanics in a convenient variational framework. This motion is local-in-time for it may be interrupted by a crushing, which entails a discontinuity of velocity with respect to time, i.e., an internal collision.

The 3D motion of a solid with large deformations

BONETTI, ELENA;COLLI, PIERLUIGI;
2014-01-01

Abstract

We study in dimension 3 the motion of a solid with large deformations. The solid may be loaded on its surface by needles, rods, beams, shells, etc. Therefore, it is wise to choose a third gradient theory for the body. It is known that the stretch matrix of the polar decomposition has to be symmetric. This is an internal constraint, which introduces a reaction stress in the Piola–Kirchhoff–Boussinesq stress. We prove that there exists a motion that satisfies the complete equations of Mechanics in a convenient variational framework. This motion is local-in-time for it may be interrupted by a crushing, which entails a discontinuity of velocity with respect to time, i.e., an internal collision.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/843477
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact