T-splines are an important tool in IGA since they allow local refinement. In this paper we define analysis-suitable T-splines of arbitrary degree and prove fundamental properties: Linear independence of the blending functions and optimal approximation properties of the associated T-spline space. These are corollaries of our main result: A T-mesh is analysis-suitable if and only if it is dual-compatible.

ANALYSIS-SUITABLE T-SPLINES OF ARBITRARY DEGREE: DEFINITION, LINEAR INDEPENDENCE AND APPROXIMATION PROPERTIES

SANGALLI, GIANCARLO;
2013-01-01

Abstract

T-splines are an important tool in IGA since they allow local refinement. In this paper we define analysis-suitable T-splines of arbitrary degree and prove fundamental properties: Linear independence of the blending functions and optimal approximation properties of the associated T-spline space. These are corollaries of our main result: A T-mesh is analysis-suitable if and only if it is dual-compatible.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/848472
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 93
  • ???jsp.display-item.citation.isi??? 71
social impact