The high cost of recombinant enzymes for the production of biofuel from ligno-cellulosic biomass is a crucial factor affecting the economic sustainability of the process. The use of plants as biofactories for the production of the suitable recombinant enzymes might be an alternative to microbial fermentation. In the case of enzyme accumulation in chloroplasts, it is fundamental to focus on the issue of full photosynthetic efficiency of transplastomic plants in the field where they might be exposed to abiotic stress such as high light intensity and high temperature. Xylanases (EC 3.2.1.8), a group of enzymes that hydrolyze linear polysaccharides of beta-1,4-xylan into xylose, find an application in the biofuel industry favouring biomass saccharification along with other cell-wall degrading enzymes. In the present study we analysed how a high level of accumulation of a thermostable xylanase in tobacco chloroplasts does not impact on photosynthetic performance of transplastomic plants grown outdoors. The recombinant enzyme was found to be stable during plant development, ex planta and after long-term storage.

Chloroplast molecular farming: efficient production of a thermostable xylanase by Nicotiana tabacum plants and long conservation of the recombinant enzyme

LONGONI, PAOLO;CELLA, RINO
2013-01-01

Abstract

The high cost of recombinant enzymes for the production of biofuel from ligno-cellulosic biomass is a crucial factor affecting the economic sustainability of the process. The use of plants as biofactories for the production of the suitable recombinant enzymes might be an alternative to microbial fermentation. In the case of enzyme accumulation in chloroplasts, it is fundamental to focus on the issue of full photosynthetic efficiency of transplastomic plants in the field where they might be exposed to abiotic stress such as high light intensity and high temperature. Xylanases (EC 3.2.1.8), a group of enzymes that hydrolyze linear polysaccharides of beta-1,4-xylan into xylose, find an application in the biofuel industry favouring biomass saccharification along with other cell-wall degrading enzymes. In the present study we analysed how a high level of accumulation of a thermostable xylanase in tobacco chloroplasts does not impact on photosynthetic performance of transplastomic plants grown outdoors. The recombinant enzyme was found to be stable during plant development, ex planta and after long-term storage.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/861636
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 18
social impact