Mammalian genomes harbor three CoREST genes. rcor1 encodes CoREST (CoREST1) and the paralogues rcor2 and rcor3 encode CoREST2 and CoREST3, respectively. Here, we describe specific properties of transcriptional complexes formed by CoREST proteins with the histone demethylase LSD1/KDM1A and histone deacetylases HDAC1/2 and the finding that all three CoRESTs express in the adult rat brain. CoRESTs interact equally strong with LSD1/KDM1A. Structural analysis shows that the overall conformation of CoREST3 is similar to that of CoREST1 complexed with LSD1/KDM1A. Nonetheless, transcriptional repressive capacity of CoREST3 is lower than that of CoREST1, which correlates with the observation that CoREST3 leads to a reduced LSD1/KDM1A catalytic efficiency. Also, CoREST2 shows a lower transcriptional repression than CoREST1, which is resistant to HDAC inhibitors. CoREST2 displays lower interaction with HDAC1/2 which is barely present in LSD1/KDM1A-CoREST2 complexes. A non-conserved Leucine in the first SANT domain of CoREST2 severely weakens its association to HDAC1/2. Furthermore, CoREST2 mutants with either increased or lacking HDAC1/2 interaction feature equivalent transcriptional repression capacities, indicating that CoREST2 represses in a HDAC-independent manner. In conclusion, differences among CoREST proteins are instrumental to the modulation of protein-protein interactions and catalytic activities of LSD1/KDM1A-CoREST-HDAC complexes, fine tuning gene expression regulation.
Differential properties of transcriptional complexes formed by the CoREST family.
CIOSSANI, GIUSEPPE;MATTEVI, ANDREA;
2014-01-01
Abstract
Mammalian genomes harbor three CoREST genes. rcor1 encodes CoREST (CoREST1) and the paralogues rcor2 and rcor3 encode CoREST2 and CoREST3, respectively. Here, we describe specific properties of transcriptional complexes formed by CoREST proteins with the histone demethylase LSD1/KDM1A and histone deacetylases HDAC1/2 and the finding that all three CoRESTs express in the adult rat brain. CoRESTs interact equally strong with LSD1/KDM1A. Structural analysis shows that the overall conformation of CoREST3 is similar to that of CoREST1 complexed with LSD1/KDM1A. Nonetheless, transcriptional repressive capacity of CoREST3 is lower than that of CoREST1, which correlates with the observation that CoREST3 leads to a reduced LSD1/KDM1A catalytic efficiency. Also, CoREST2 shows a lower transcriptional repression than CoREST1, which is resistant to HDAC inhibitors. CoREST2 displays lower interaction with HDAC1/2 which is barely present in LSD1/KDM1A-CoREST2 complexes. A non-conserved Leucine in the first SANT domain of CoREST2 severely weakens its association to HDAC1/2. Furthermore, CoREST2 mutants with either increased or lacking HDAC1/2 interaction feature equivalent transcriptional repression capacities, indicating that CoREST2 represses in a HDAC-independent manner. In conclusion, differences among CoREST proteins are instrumental to the modulation of protein-protein interactions and catalytic activities of LSD1/KDM1A-CoREST-HDAC complexes, fine tuning gene expression regulation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.