Recently de la Torre et al. (Phys. Rev. Lett., 109 (2012) 090403) reconstructed Quantum Theory from its local structure on the basis of local discriminability and the existence of a one-parameter group of bipartite transformations containing an entangling gate. This result relies on universality of any entangling gate for quantum computation. Here we prove universality of C-NOT with local gates for Real Quantum Theory (RQT), showing that the universality requirement would not be sufficient for the result, whereas local discriminability and the local qubit structure play a crucial role. For reversible computation, generally an extra rebit is needed for RQT. As a by-product we also provide a short proof of universality of C-NOT for CQT.

Universality of computation in real quantum theory

D'ARIANO, GIACOMO;PERINOTTI, PAOLO
2013-01-01

Abstract

Recently de la Torre et al. (Phys. Rev. Lett., 109 (2012) 090403) reconstructed Quantum Theory from its local structure on the basis of local discriminability and the existence of a one-parameter group of bipartite transformations containing an entangling gate. This result relies on universality of any entangling gate for quantum computation. Here we prove universality of C-NOT with local gates for Real Quantum Theory (RQT), showing that the universality requirement would not be sufficient for the result, whereas local discriminability and the local qubit structure play a crucial role. For reversible computation, generally an extra rebit is needed for RQT. As a by-product we also provide a short proof of universality of C-NOT for CQT.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/887235
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact