Recently de la Torre et al. (Phys. Rev. Lett., 109 (2012) 090403) reconstructed Quantum Theory from its local structure on the basis of local discriminability and the existence of a one-parameter group of bipartite transformations containing an entangling gate. This result relies on universality of any entangling gate for quantum computation. Here we prove universality of C-NOT with local gates for Real Quantum Theory (RQT), showing that the universality requirement would not be sufficient for the result, whereas local discriminability and the local qubit structure play a crucial role. For reversible computation, generally an extra rebit is needed for RQT. As a by-product we also provide a short proof of universality of C-NOT for CQT.
Universality of computation in real quantum theory
D'ARIANO, GIACOMO;PERINOTTI, PAOLO
2013-01-01
Abstract
Recently de la Torre et al. (Phys. Rev. Lett., 109 (2012) 090403) reconstructed Quantum Theory from its local structure on the basis of local discriminability and the existence of a one-parameter group of bipartite transformations containing an entangling gate. This result relies on universality of any entangling gate for quantum computation. Here we prove universality of C-NOT with local gates for Real Quantum Theory (RQT), showing that the universality requirement would not be sufficient for the result, whereas local discriminability and the local qubit structure play a crucial role. For reversible computation, generally an extra rebit is needed for RQT. As a by-product we also provide a short proof of universality of C-NOT for CQT.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.