Character displacement (CD) is the evolutionary process which leads to the divergence in trait expression of closely related species in regions where species co-occur, compared to allopatric populations. In Europe CD has been investigated in males of Calopteryx splendens and C. virgo and has been related to species recognition. If species recognition is relevant for males, also females should benefit from CD. The most obvious differences between females of these two species are wing profile and colour. We sampled females from allopatric and from sympatric populations with different relative abundances of these species. Wing shape and pigmentation were evaluated for each damselfly. CD was found in wing profile but not in wing transparency. The relative abundance of species significantly affected CD, but with a different pattern in each species. The prediction that wing shape become more different from the allopatric state when the species was relatively rare, but more similar to the allopatric state when the species was common was evident only for C. splendens. Wing shape changes might increase differences in flying patterns making males more effective to discriminate between heterospecific females. So, CD we observed may be the result of a selection directed to reduce interspecific reproductive interference.
Does character displacement demonstrate density-dependent expression in females? A test on the wing shape of two species of European damselflies
GALLESI, MARCO MATTEO;SACCHI, ROBERTO
2014-01-01
Abstract
Character displacement (CD) is the evolutionary process which leads to the divergence in trait expression of closely related species in regions where species co-occur, compared to allopatric populations. In Europe CD has been investigated in males of Calopteryx splendens and C. virgo and has been related to species recognition. If species recognition is relevant for males, also females should benefit from CD. The most obvious differences between females of these two species are wing profile and colour. We sampled females from allopatric and from sympatric populations with different relative abundances of these species. Wing shape and pigmentation were evaluated for each damselfly. CD was found in wing profile but not in wing transparency. The relative abundance of species significantly affected CD, but with a different pattern in each species. The prediction that wing shape become more different from the allopatric state when the species was relatively rare, but more similar to the allopatric state when the species was common was evident only for C. splendens. Wing shape changes might increase differences in flying patterns making males more effective to discriminate between heterospecific females. So, CD we observed may be the result of a selection directed to reduce interspecific reproductive interference.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.