We show how some of the refined tropical counts of Block and Goettsche emerge from the wall-crossing formalism. This leads naturally to a definition of a class of putative q-deformed Gromov-Witten invariants. We prove that this coincides with another natural q-deformation, provided by a result of Reineke and Weist in the context of quiver representations, when the latter is well defined.
Block-Goettsche invariants from wall-crossing
STOPPA, JACOPO
2015-01-01
Abstract
We show how some of the refined tropical counts of Block and Goettsche emerge from the wall-crossing formalism. This leads naturally to a definition of a class of putative q-deformed Gromov-Witten invariants. We prove that this coincides with another natural q-deformation, provided by a result of Reineke and Weist in the context of quiver representations, when the latter is well defined.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.