We show how some of the refined tropical counts of Block and Goettsche emerge from the wall-crossing formalism. This leads naturally to a definition of a class of putative q-deformed Gromov-Witten invariants. We prove that this coincides with another natural q-deformation, provided by a result of Reineke and Weist in the context of quiver representations, when the latter is well defined.

Block-Goettsche invariants from wall-crossing

STOPPA, JACOPO
2015-01-01

Abstract

We show how some of the refined tropical counts of Block and Goettsche emerge from the wall-crossing formalism. This leads naturally to a definition of a class of putative q-deformed Gromov-Witten invariants. We prove that this coincides with another natural q-deformation, provided by a result of Reineke and Weist in the context of quiver representations, when the latter is well defined.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/910834
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact