A variety of ubiquitinated protein-containing cytoplasmic structures has been reported, from aggresomes to aggresomelike induced structures/sequestosomes or particle-rich cytoplasmic structures (PaCSs) that we recently observed in some human diseases. Nevertheless, the morphological and cytochemical patterns of the different structures remain largely unknown thus jeopardizing their univocal identification. Here, we show that PaCSs resulted from proteasome and polyubiquitinated protein accumulation into well-demarcated, membrane-free, cytoskeleton-poor areas enriched in glycogen and glycosaminoglycans. A major requirement for PaCS detection by either electron or confocal microscopy was the addition of osmium to aldehyde fixatives. However, by analyzing living cells, we found that proteasome chymotrypsinlike activity concentrated in well-defined cytoplasmic structures identified as PaCSs by ultrastructural morphology and immunocytochemistry of the same cells. PaCSs differed ultrastructurally and cytochemically from sequestosomes which may coexist with PaCSs. In human dendritic or natural killer cells, PaCSs were induced in vitro by cytokines/trophic factors during differentiation/activation from blood progenitors. Our results provide evidence that PaCS is indeed a novel distinctive cytoplasmic structure which may play a critical role in the ubiquitin–proteasome system response to immune, infectious or proneoplastic stimuli.

PaCS is a novel cytoplasmic structure containing functional proteasome and inducible by cytokines/trophic factors.

SOMMI, PATRIZIA;NECCHI, VITTORIO;VITALI, AGOSTINA;MONTAGNA, DANIELA;RICCI, VITTORIO;SOLCIA, ENRICO
2013-01-01

Abstract

A variety of ubiquitinated protein-containing cytoplasmic structures has been reported, from aggresomes to aggresomelike induced structures/sequestosomes or particle-rich cytoplasmic structures (PaCSs) that we recently observed in some human diseases. Nevertheless, the morphological and cytochemical patterns of the different structures remain largely unknown thus jeopardizing their univocal identification. Here, we show that PaCSs resulted from proteasome and polyubiquitinated protein accumulation into well-demarcated, membrane-free, cytoskeleton-poor areas enriched in glycogen and glycosaminoglycans. A major requirement for PaCS detection by either electron or confocal microscopy was the addition of osmium to aldehyde fixatives. However, by analyzing living cells, we found that proteasome chymotrypsinlike activity concentrated in well-defined cytoplasmic structures identified as PaCSs by ultrastructural morphology and immunocytochemistry of the same cells. PaCSs differed ultrastructurally and cytochemically from sequestosomes which may coexist with PaCSs. In human dendritic or natural killer cells, PaCSs were induced in vitro by cytokines/trophic factors during differentiation/activation from blood progenitors. Our results provide evidence that PaCS is indeed a novel distinctive cytoplasmic structure which may play a critical role in the ubiquitin–proteasome system response to immune, infectious or proneoplastic stimuli.
2013
Cell & Developmental Biology contains resources in biochemistry, molecular biology, biophysics, physiology, and pharmacology that have a specific emphasis on cellular function in eukaryotic systems. Topics of particular importance include receptor biology and signal transduction, regulation of gene expression at the cellular level, developmental genetics, developmental biology and morphogenesis, and cell-environment interactions. Resources concentrated on molecular biochemistry and molecular regulation of gene expression, as well as microscopic or histological analysis of cell or tissue samples are excluded.
Esperti anonimi
Inglese
Internazionale
ELETTRONICO
8
12
e82560
Ubiquitin; Proteasome; Cytoplasmic bodies; Cytokines
8
info:eu-repo/semantics/article
262
Sommi, Patrizia; Necchi, Vittorio; Vitali, Agostina; Montagna, Daniela; De Luigi, A.; Salmona, M.; Ricci, Vittorio; Solcia, Enrico
1 Contributo su Rivista::1.1 Articolo in rivista
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/980240
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact