The Heisenberg-Robertson uncertainty relation expresses a limitation in the possible preparations of the system by giving a lower bound to the product of the variances of two observables in terms of their commutator. Notably, it does not capture the concept of incompatible observables because it can be trivial; i.e., the lower bound can be null even for two noncompatible observables. Here we give two stronger uncertainty relations, relating to the sum of variances, whose lower bound is guaranteed to be nontrivial whenever the two observables are incompatible on the state of the system.

Stronger Uncertainty Relations for All Incompatible Observables

MACCONE, LORENZO;
2014-01-01

Abstract

The Heisenberg-Robertson uncertainty relation expresses a limitation in the possible preparations of the system by giving a lower bound to the product of the variances of two observables in terms of their commutator. Notably, it does not capture the concept of incompatible observables because it can be trivial; i.e., the lower bound can be null even for two noncompatible observables. Here we give two stronger uncertainty relations, relating to the sum of variances, whose lower bound is guaranteed to be nontrivial whenever the two observables are incompatible on the state of the system.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/985667
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 210
  • ???jsp.display-item.citation.isi??? 204
social impact