MOIOLA, ANDREA

MOIOLA, ANDREA  

DIPARTIMENTO DI MATEMATICA 'FELICE CASORATI'  

Mostra records
Risultati 1 - 20 di 34 (tempo di esecuzione: 0.007 secondi).
Titolo Data di pubblicazione Autore(i) File
A high-frequency boundary element method for scattering by a class of multiple obstacles 1-gen-2020 Gibbs, Andrew; N Chandler-Wilde, Simon; Langdon, Stephen; Moiola, Andrea
A note on properties of the restriction operator on Sobolev spaces 1-gen-2017 Hewett, David P.; Moiola, Andrea
A priori error analysis of space-time Trefftz discontinuous Galerkin methods for wave problems 1-gen-2016 Kretzschmar, Fritz; Moiola, Andrea; Perugia, Ilaria; Schnepp, Sascha M.
A SPACE-TIME QUASI-TREFFTZ DG METHOD FOR THE WAVE EQUATION WITH PIECEWISE-SMOOTH COEFFICIENTS 1-gen-2022 Imbert-gerard, Lm; Moiola, A; Stocker, P
A space-time Trefftz discontinuous Galerkin method for the acoustic wave equation in first-order formulation 1-gen-2017 Moiola, Andrea; Perugia, Ilaria
A Space-Time Trefftz Discontinuous Galerkin Method for the Linear Schrödinger Equation 1-gen-2022 Gómez, Sergio; Moiola, Andrea
A survey of trefftz methods for the helmholtz equation 1-gen-2016 Hiptmair, Ralf; Moiola, Andrea; Perugia, Ilaria
Acoustic transmission problems: Wavenumber-explicit bounds and resonance-free regions 1-gen-2019 Moiola, A.; Spence, E. A.
Analysis of the internal electric fields of pristine ice crystals and aggregate snowflakes, and their effect on scattering 1-gen-2019 Mccusker, K.; Westbrook, C. D.; Moiola, A.
Approximation by harmonic polynomials in star-shaped domains and exponential convergence of Trefftz hp-DGFEM 1-gen-2014 R., Hiptmair; Moiola, Andrea; Perugia, Ilaria; Schwab, C. h.
Boundary element methods for acoustic scattering by fractal screens 1-gen-2021 Chandler-Wilde, S. N.; Hewett, D. P.; Moiola, A.; Besson, J.
Can coercive formulations lead to fast and accurate solution of the Helmholtz equation? 1-gen-2019 Diwan, G. C.; Moiola, A.; Spence, E. A.
Corrigendum: Interpolation of Hilbert and Sobolev spaces: Quantitative estimates and counterexamples (vol 61, pg 414, 2015) 1-gen-2022 Chandler-Wilde, S; Hewett, D; Moiola, A
Density results for Sobolev, Besov and Triebel–Lizorkin spaces on rough sets 1-gen-2021 Caetano, A. M.; Hewett, D. P.; Moiola, A.
Erratum to: A survey of Trefftz methods for the Helmholtz equation (Lecture Notes in Computational Science and Engineering, (2016), 114, 10.1007/978-3-319-41640-3_8) 1-gen-2016 Hiptmair, Ralf; Moiola, Andrea; Perugia, Ilaria
Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations 1-gen-2013 Hiptmair, Ralf; Moiola, Andrea; Perugia, Ilaria
Explicit bounds for the high-frequency time-harmonic Maxwell equations in heterogeneous media 1-gen-2023 Chaumont-Frelet, Th??ophile; Moiola, Andrea; Spence, Euan A.
Implementation of an interior point source in the ultra weak variational formulation through source extraction 1-gen-2014 Howarth, C. J; Childs, P. N.; Moiola, Andrea
Interpolation of hilbert and sobolev spaces: Quantitative estimates and counterexamples 1-gen-2015 Chandler Wilde, S. N.; Hewett, D. P.; Moiola, Andrea
Is the helmholtz equation really sign-indefinite? 1-gen-2014 Moiola, Andrea; Spence, Euan A.