MOIOLA, ANDREA
MOIOLA, ANDREA
DIPARTIMENTO DI MATEMATICA 'FELICE CASORATI'
A Hausdorff-measure boundary element method for acoustic scattering by fractal screens
2024-01-01 Caetano, A. M.; Chandler-Wilde, S. N.; Gibbs, A.; Hewett, D. P.; Moiola, A.
A high-frequency boundary element method for scattering by a class of multiple obstacles
2021-01-01 Gibbs, Andrew; N Chandler-Wilde, Simon; Langdon, Stephen; Moiola, Andrea
A note on properties of the restriction operator on Sobolev spaces
2017-01-01 Hewett, David P.; Moiola, Andrea
A priori error analysis of space-time Trefftz discontinuous Galerkin methods for wave problems
2016-01-01 Kretzschmar, Fritz; Moiola, Andrea; Perugia, Ilaria; Schnepp, Sascha M.
A SPACE-TIME QUASI-TREFFTZ DG METHOD FOR THE WAVE EQUATION WITH PIECEWISE-SMOOTH COEFFICIENTS
2023-01-01 Imbert-gerard, Lm; Moiola, A; Stocker, P
A space-time Trefftz discontinuous Galerkin method for the acoustic wave equation in first-order formulation
2017-01-01 Moiola, Andrea; Perugia, Ilaria
A Space-Time Trefftz Discontinuous Galerkin Method for the Linear Schrödinger Equation
2022-01-01 Gómez, Sergio; Moiola, Andrea
A space–time DG method for the Schrödinger equation with variable potential
2024-01-01 Gómez, Sergio; Moiola, Andrea
A survey of trefftz methods for the helmholtz equation
2016-01-01 Hiptmair, Ralf; Moiola, Andrea; Perugia, Ilaria
Acoustic transmission problems: Wavenumber-explicit bounds and resonance-free regions
2019-01-01 Moiola, A.; Spence, E. A.
An unconditionally stable space–time isogeometric method for the acoustic wave equation
2024-01-01 Fraschini, S.; Loli, G.; Moiola, A.; Sangalli, G.
Analysis of the internal electric fields of pristine ice crystals and aggregate snowflakes, and their effect on scattering
2019-01-01 Mccusker, K.; Westbrook, C. D.; Moiola, A.
Approximation by harmonic polynomials in star-shaped domains and exponential convergence of Trefftz hp-DGFEM
2014-01-01 R., Hiptmair; Moiola, Andrea; Perugia, Ilaria; Schwab, C. h.
Boundary element methods for acoustic scattering by fractal screens
2021-01-01 Chandler-Wilde, S. N.; Hewett, D. P.; Moiola, A.; Besson, J.
Boundary element methods for acoustic scattering by fractal screens
2021-01-01 Chandler-Wilde, S. N.; Hewett, D. P.; Moiola, A.; Besson, J.
Can coercive formulations lead to fast and accurate solution of the Helmholtz equation?
2019-01-01 Diwan, G. C.; Moiola, A.; Spence, E. A.
Corrigendum: Interpolation of Hilbert and Sobolev spaces: Quantitative estimates and counterexamples (vol 61, pg 414, 2015)
2022-01-01 Chandler-Wilde, S; Hewett, D; Moiola, A
Density results for Sobolev, Besov and Triebel–Lizorkin spaces on rough sets
2021-01-01 Caetano, A. M.; Hewett, D. P.; Moiola, A.
Erratum to: A survey of Trefftz methods for the Helmholtz equation (Lecture Notes in Computational Science and Engineering, (2016), 114, 10.1007/978-3-319-41640-3_8)
2016-01-01 Hiptmair, Ralf; Moiola, Andrea; Perugia, Ilaria
Error analysis of Trefftz-discontinuous Galerkin methods for the time-harmonic Maxwell equations
2013-01-01 Hiptmair, Ralf; Moiola, Andrea; Perugia, Ilaria