Voltage-gated calcium (Cav1.3) channels in mammalian inner hair cells (IHCs) open in response to sound and the resulting Ca(2+) entry triggers the release of the neurotransmitter glutamate onto afferent terminals. At low to mid sound frequencies cell depolarization follows the sound sinusoid and pulses of transmitter release from the hair cell generate excitatory postsynaptic currents (EPSCs) in the afferent fiber that translate into a phase-locked pattern of action potential activity. The present article summarizes our current understanding on the elementary properties of single IHC Ca(2+) channels, and how these could have functional implications for certain, poorly understood, features of synaptic transmission at auditory hair cell ribbon synapses.

Elementary properties of Ca(2+) channels and their influence on multivesicular release and phase-locking at auditory hair cell ribbon synapses.

MAGISTRETTI, JACOPO;SPAIARDI, PAOLO;MASETTO, SERGIO
2015-01-01

Abstract

Voltage-gated calcium (Cav1.3) channels in mammalian inner hair cells (IHCs) open in response to sound and the resulting Ca(2+) entry triggers the release of the neurotransmitter glutamate onto afferent terminals. At low to mid sound frequencies cell depolarization follows the sound sinusoid and pulses of transmitter release from the hair cell generate excitatory postsynaptic currents (EPSCs) in the afferent fiber that translate into a phase-locked pattern of action potential activity. The present article summarizes our current understanding on the elementary properties of single IHC Ca(2+) channels, and how these could have functional implications for certain, poorly understood, features of synaptic transmission at auditory hair cell ribbon synapses.
2015
Physiology considers resources that study the regulation of biological functions at the level of the whole organism. This includes research from biochemical, cell biological and whole system studies of human and animal physiology. Comparative physiology, biological rhythms, and physiological measurement are also included. Resources emphasizing cellular regulation, or the physiology of specific organs are excluded and are covered in the Cell & Developmental Biology and Medical Research: Organs & Systems categories.
Esperti anonimi
Inglese
Internazionale
ELETTRONICO
9
123
1
9
9
Ca2+ channel; Eps8; cochlea; inner hair cell; multivesicular release; patch-clamp; phase locking; ribbon synapse
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4389406/
4
info:eu-repo/semantics/article
262
Magistretti, Jacopo; Spaiardi, Paolo; Johnson, Stuart L.; Masetto, Sergio
1 Contributo su Rivista::1.1 Articolo in rivista
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1103257
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact