We recently demonstrated that the main fla/che promoter PA(fla/che) can be bound by the phosphorylated form of DegU (DegU~P) with two opposite outcomes: complete repression if DegU~P alone is bound to PA(fla/che) DNA; transcriptional stimulation if DNA is bound by DegU~P complexed with SwrA. Thus SwrA, which is necessary for swarming motility, constitutes an auxiliary factor that modulates the transcriptional activity of the response regulator DegU turning it from a repressor into an activator of PA(fla/che). Evidences indicate that SwrA might modulate other DegU~P-regulated promoters. Also, we demonstrated that DegU32(Hy) is a mutant protein unable to functionally interact with SwrA at the fla/che promoter; the phenotype of degU32(Hy) strains differs from that of the wild type DegU~P and we suggest the use of degS200(Hy) mutant strains for studies aimed at analyzing the effect of the level of DegU phosphorylation. SwrA is coded by a gene containing a slippery poly-adenine tract that allows phase variations between a functional and a non-functional allelic state. In swrA+ cells (typically in undomesticated strains) fla/che transcription oscillates from the basal/medium level to the activated state that is required for swarming. When swrA is in the non-functional form (e.g. in the 168 laboratory strain) fla/che transcription can oscillate between a repressed state in which no flagella are made and a basal/medium level of transcription sufficient for a limited swimming motility. While in both swrA- and swrA+ strains oscillations depend on phosphorylation of DegU mediated by environmental stimuli, in swrA- cells the secondary fla/che promoter PD3(fla/che) plays an important role that might constitute the bistable switch acting on motility.

The molecular function of SwrA: an auxiliary factor modulating DegU transcriptional activity

CALVIO, CINZIA;GALIZZI, ALESSANDRO
2014-01-01

Abstract

We recently demonstrated that the main fla/che promoter PA(fla/che) can be bound by the phosphorylated form of DegU (DegU~P) with two opposite outcomes: complete repression if DegU~P alone is bound to PA(fla/che) DNA; transcriptional stimulation if DNA is bound by DegU~P complexed with SwrA. Thus SwrA, which is necessary for swarming motility, constitutes an auxiliary factor that modulates the transcriptional activity of the response regulator DegU turning it from a repressor into an activator of PA(fla/che). Evidences indicate that SwrA might modulate other DegU~P-regulated promoters. Also, we demonstrated that DegU32(Hy) is a mutant protein unable to functionally interact with SwrA at the fla/che promoter; the phenotype of degU32(Hy) strains differs from that of the wild type DegU~P and we suggest the use of degS200(Hy) mutant strains for studies aimed at analyzing the effect of the level of DegU phosphorylation. SwrA is coded by a gene containing a slippery poly-adenine tract that allows phase variations between a functional and a non-functional allelic state. In swrA+ cells (typically in undomesticated strains) fla/che transcription oscillates from the basal/medium level to the activated state that is required for swarming. When swrA is in the non-functional form (e.g. in the 168 laboratory strain) fla/che transcription can oscillate between a repressed state in which no flagella are made and a basal/medium level of transcription sufficient for a limited swimming motility. While in both swrA- and swrA+ strains oscillations depend on phosphorylation of DegU mediated by environmental stimuli, in swrA- cells the secondary fla/che promoter PD3(fla/che) plays an important role that might constitute the bistable switch acting on motility.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1104580
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact