The Delay Multiply and Sum (DMAS) beamforming algorithm was originally conceived for microwave imaging of breast cancer. In a previous work, we demonstrated that, by properly modifying and improving the algorithm processing steps, DMAS can be successfully applied to ultrasound signals for B-mode image formation and that it outperforms standard Delay and Sum (DAS) beamforming in terms of contrast resolution. As previously pointed out, however, DMAS-beamformed B-mode images, in which fixed and dynamic focusing are applied respectively during transmit and receive operations, show an intensity drop away from the transmit focal depth compared to DAS images. This could be due to the fact that DMAS beamforming is based on a measure of backscattered signal coherence, which reaches its maximum only at the transmit focus, where signals are perfectly realigned. The preliminary results presented in this work show that, by employing Synthetic Aperture Focusing (SAF), which allows to achieve dynamic focusing both on transmission and reception, this intensity loss is compensated, as DAS and DMAS images have almost the same maximum amplitude level at all depths.

Ultrasound Synthetic Aperture Focusing with the Delay Multiply and sum beamforming algorithm

MATRONE, GIULIA;MAGENES, GIOVANNI
2015-01-01

Abstract

The Delay Multiply and Sum (DMAS) beamforming algorithm was originally conceived for microwave imaging of breast cancer. In a previous work, we demonstrated that, by properly modifying and improving the algorithm processing steps, DMAS can be successfully applied to ultrasound signals for B-mode image formation and that it outperforms standard Delay and Sum (DAS) beamforming in terms of contrast resolution. As previously pointed out, however, DMAS-beamformed B-mode images, in which fixed and dynamic focusing are applied respectively during transmit and receive operations, show an intensity drop away from the transmit focal depth compared to DAS images. This could be due to the fact that DMAS beamforming is based on a measure of backscattered signal coherence, which reaches its maximum only at the transmit focus, where signals are perfectly realigned. The preliminary results presented in this work show that, by employing Synthetic Aperture Focusing (SAF), which allows to achieve dynamic focusing both on transmission and reception, this intensity loss is compensated, as DAS and DMAS images have almost the same maximum amplitude level at all depths.
2015
Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE
The Electrical and Electronics Engineering category covers resources concerned with applications of electricity, generally those involving current flow through conductors, as in motors and generators. This category also covers the examination of the conduction of electricity through gases or a vacuum as well as through semiconducting materials. Topics include image and signal processing, electromagnetics, electronic components and materials, microwave technology, and microelectronics.
Esperti anonimi
Inglese
contributo
Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE
25-29 agosto 2015
Milano
Internazionale
ELETTRONICO
IEEE Proceedings
137
140
4
978-1-4244-9271-8
978-1-4244-9271-8
IEEE Press
Ultrasoud Imaging, Beamformig Algorithms
http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=7318319
no
none
Matrone, Giulia; Savoia, Alessandro Stuart; Caliano, Giosue; Magenes, Giovanni
273
info:eu-repo/semantics/conferenceObject
4
4 Contributo in Atti di Convegno (Proceeding)::4.1 Contributo in Atti di convegno
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1109543
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 16
social impact