Background: Elastic scattering is probably the main event in the interactions of nucleons with nuclei. Even if this process has been extensively studied over the last years, a consistent description, i.e., starting from microscopic two- and many-body forces connected by the same symmetries and principles, is still under development. Purpose: In this work we study the domain of applicability of microscopic two-body chiral potentials in the construction of an optical potential. Methods: We basically follow the Kerman, McManus, and Thaler approach [Ann. Phys. (NY) 8, 551 (1959)] to build a microscopic complex optical potential, and then we perform some test calculations on 16O at different energies. Results:. Our conclusion is that a particular set of potentials with a Lippmann–Schwinger cutoff at relatively high energies (above 500 MeV) reproduces best the scattering observables. Conclusions: Our work shows that building an optical potential within chiral perturbation theory is a promising approach for describing elastic proton scattering; in particular, in view of the future inclusion of many-body forces that naturally arises in such a framework.

Theoretical optical potential derived from nucleon-nucleon chiral potentials

VORABBI, MATTEO;GIUSTI, CARLOTTA
2016-01-01

Abstract

Background: Elastic scattering is probably the main event in the interactions of nucleons with nuclei. Even if this process has been extensively studied over the last years, a consistent description, i.e., starting from microscopic two- and many-body forces connected by the same symmetries and principles, is still under development. Purpose: In this work we study the domain of applicability of microscopic two-body chiral potentials in the construction of an optical potential. Methods: We basically follow the Kerman, McManus, and Thaler approach [Ann. Phys. (NY) 8, 551 (1959)] to build a microscopic complex optical potential, and then we perform some test calculations on 16O at different energies. Results:. Our conclusion is that a particular set of potentials with a Lippmann–Schwinger cutoff at relatively high energies (above 500 MeV) reproduces best the scattering observables. Conclusions: Our work shows that building an optical potential within chiral perturbation theory is a promising approach for describing elastic proton scattering; in particular, in view of the future inclusion of many-body forces that naturally arises in such a framework.
File in questo prodotto:
File Dimensione Formato  
PhysRevC.93.034619.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 5.93 MB
Formato Adobe PDF
5.93 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1122282
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 28
social impact