Predicting the complexity level (i.e. the number of complications and their related hospitalizations) in a T2D cohort is a critical step in prevention, resource optimization and overall patient management. Our data set was obtained by monitoring a T2D diabetic cohort along up to 10 years through electronic medical records of a local healthcare agency data warehouse. In order to conveniently handle temporarily sparse data, we designed a model describing the cohort evolution with Continuous Time Bayesian Networks (CTBN). The network structure and its parameters are entirely data driven. Compared to traditional Bayesian Networks, CTBNs admit cycles. As consequence, CTBNs fit the complexity of chronic metabolic syndromes where variables show a reciprocal influence. Network nodes represent metabolic (glycated hemoglobin, lipid profile (cholesterol, triglycerides), and biometric (BMI) data. We observed how these variables directly or indirectly affect the disease level of complexity, and how the variables influence the cumulative adverse events a patient undergoes.

Learning T2D evolving complexity from EMR and administrative data by means of Continuous time Bayesian networks

MARINI, SIMONE;DAGLIATI, ARIANNA;SACCHI, LUCIA;BELLAZZI, RICCARDO
2016-01-01

Abstract

Predicting the complexity level (i.e. the number of complications and their related hospitalizations) in a T2D cohort is a critical step in prevention, resource optimization and overall patient management. Our data set was obtained by monitoring a T2D diabetic cohort along up to 10 years through electronic medical records of a local healthcare agency data warehouse. In order to conveniently handle temporarily sparse data, we designed a model describing the cohort evolution with Continuous Time Bayesian Networks (CTBN). The network structure and its parameters are entirely data driven. Compared to traditional Bayesian Networks, CTBNs admit cycles. As consequence, CTBNs fit the complexity of chronic metabolic syndromes where variables show a reciprocal influence. Network nodes represent metabolic (glycated hemoglobin, lipid profile (cholesterol, triglycerides), and biometric (BMI) data. We observed how these variables directly or indirectly affect the disease level of complexity, and how the variables influence the cumulative adverse events a patient undergoes.
2016
9789897581700
9789897581700
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1127082
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact