The pre-germinative metabolism is among the most fascinating aspects of seed biology. The early seed germination phase, or pre-germination, is characterized by rapid water uptake (imbibition), which directs a series of dynamic biochemical events. Among those are enzyme activation, DNA damage and repair, and use of reserve storage compounds, such as lipids, carbohydrates and proteins. Industrial seedling production and intensive agricultural production systems require seed stocks with high rate of synchronized germination and low dormancy. Consequently, seed dormancy, a quantitative trait related to the activation of the pre-germinative metabolism, is probably the most studied seed trait in model species and crops. Single omics, systems biology, QTLs and GWAS mapping approaches have unveiled a list of molecules and regulatory mechanisms acting at transcriptional, post-transcriptional and post-translational levels. Most of the identified candidate genes encode for regulatory proteins targeting ROS, phytohormone and primary metabolisms, corroborating the data obtained from simple molecular biology approaches. Emerging evidences show that epigenetic regulation plays a crucial role in the regulation of thesementioned processes, constituting a still unexploited strategy to modulate seed traits. The present review will provide an up-date of the current knowledge on seed pregerminative metabolism, gathering the most relevant results from physiological, genetics, and omics studies conducted in model and crop plants. The effects exerted by the biotic and abiotic stresses and priming are also addressed. The possible implications derived from the modulation of pre-germinative metabolism will be discussed from the point of view of seed quality and technology.
Systems biology and genome-wide approaches to unveil the molecular players involved in the pre-germinative metabolism: implications on seed technology traits
MACOVEI, ANCA;PAGANO, ANDREA;CARBONERA, DANIELA;BALESTRAZZI, ALMA;
2017-01-01
Abstract
The pre-germinative metabolism is among the most fascinating aspects of seed biology. The early seed germination phase, or pre-germination, is characterized by rapid water uptake (imbibition), which directs a series of dynamic biochemical events. Among those are enzyme activation, DNA damage and repair, and use of reserve storage compounds, such as lipids, carbohydrates and proteins. Industrial seedling production and intensive agricultural production systems require seed stocks with high rate of synchronized germination and low dormancy. Consequently, seed dormancy, a quantitative trait related to the activation of the pre-germinative metabolism, is probably the most studied seed trait in model species and crops. Single omics, systems biology, QTLs and GWAS mapping approaches have unveiled a list of molecules and regulatory mechanisms acting at transcriptional, post-transcriptional and post-translational levels. Most of the identified candidate genes encode for regulatory proteins targeting ROS, phytohormone and primary metabolisms, corroborating the data obtained from simple molecular biology approaches. Emerging evidences show that epigenetic regulation plays a crucial role in the regulation of thesementioned processes, constituting a still unexploited strategy to modulate seed traits. The present review will provide an up-date of the current knowledge on seed pregerminative metabolism, gathering the most relevant results from physiological, genetics, and omics studies conducted in model and crop plants. The effects exerted by the biotic and abiotic stresses and priming are also addressed. The possible implications derived from the modulation of pre-germinative metabolism will be discussed from the point of view of seed quality and technology.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.