The mass of the top quark is measured in a data set corresponding to 4.6 fb(-1) of proton-proton collisions with centre-of-mass energy root s = 7 TeV collected by the ATLAS detector at the LHC. Events consistent with hadronic decays of top-antitop quark pairs with at least six jets in the final state are selected. The substantial background from multijet production is modelled with data-driven methods that utilise the number of identified b-quark jets and the transverse momentum of the sixth leading jet, which have minimal correlation. The top-quark mass is obtained from template fits to the ratio of three-jet to dijet mass. The three-jet mass is calculated from the three jets produced in a top-quark decay. Using these three jets the dijet mass is obtained from the two jets produced in the W boson decay. The top-quark mass obtained from this fit is thus less sensitive to the uncertainty in the energy measurement of the jets. A binned likelihood fit yields a top-quark mass of m(t) = 175.1 +/- 1.4 (stat.) +/- 1.2 (syst.) GeV.

Measurement of the top-quark mass in the fully hadronic decay channel from ATLAS data at √ = 7TeV

CONTA, CLAUDIO;DONDERO, PAOLO;FRATERNALI, MARCO;LIVAN, MICHELE;NEGRI, ANDREA;REBUZZI, DANIELA MARCELLA;RIMOLDI, ADELE;
2015-01-01

Abstract

The mass of the top quark is measured in a data set corresponding to 4.6 fb(-1) of proton-proton collisions with centre-of-mass energy root s = 7 TeV collected by the ATLAS detector at the LHC. Events consistent with hadronic decays of top-antitop quark pairs with at least six jets in the final state are selected. The substantial background from multijet production is modelled with data-driven methods that utilise the number of identified b-quark jets and the transverse momentum of the sixth leading jet, which have minimal correlation. The top-quark mass is obtained from template fits to the ratio of three-jet to dijet mass. The three-jet mass is calculated from the three jets produced in a top-quark decay. Using these three jets the dijet mass is obtained from the two jets produced in the W boson decay. The top-quark mass obtained from this fit is thus less sensitive to the uncertainty in the energy measurement of the jets. A binned likelihood fit yields a top-quark mass of m(t) = 175.1 +/- 1.4 (stat.) +/- 1.2 (syst.) GeV.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1177553
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 15
social impact