This paper describes the challenge of real-time tumor tissue identification dealt with by the HypErspectraL Imaging Cancer Detection (HELICoiD) European project. This project was funded by the Research Executive Agency, through the Future and Emerging Technologies (FET-Open) programme, under the 7th Framework Programme of the European Union. It involved four universities, three industrial partners and two hospitals. In this paper, we focused on the activity performed by the University of Las Palmas de Gran Canaria, in collaboration with the University of Pavia, concerning the parallel implementation of Support Vector Machine (SVM) classification for tumor tissue identification during surgery. Obtained results show that this classification is real-time compliant when performed using Graphic Processing Units (GPUs)
The HELICoiD project: parallel SVM for brain cancer classification
TORTI, EMANUELE;DANESE, GIOVANNI;LEPORATI, FRANCESCO;
2017-01-01
Abstract
This paper describes the challenge of real-time tumor tissue identification dealt with by the HypErspectraL Imaging Cancer Detection (HELICoiD) European project. This project was funded by the Research Executive Agency, through the Future and Emerging Technologies (FET-Open) programme, under the 7th Framework Programme of the European Union. It involved four universities, three industrial partners and two hospitals. In this paper, we focused on the activity performed by the University of Las Palmas de Gran Canaria, in collaboration with the University of Pavia, concerning the parallel implementation of Support Vector Machine (SVM) classification for tumor tissue identification during surgery. Obtained results show that this classification is real-time compliant when performed using Graphic Processing Units (GPUs)I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.