Some aquaporins (AQPs) have been recently demonstrated to facilitate the diffusion of hydrogen peroxide (H₂O₂) from the producing cells to the extracellular fluid, and their reactive oxygen species scavenging properties have been defined. Nevertheless, the identification of different AQPs acting as peroxiporins, their functional role in eustress and distress, and the identification of antioxidant compounds able to regulate AQP gating, remain unsolved. This study aims to investigate, in HeLa cells: (1) the expression of different AQPs; (2) the evaluation of naringenin, quercetin, (R)-aloesaponol III 8-methyl ether, marrubiin, and curcumin antioxidant profiles, via α,α-diphenyl-β-picrylhydrazyl assay; (3) the effect of the compounds on the water permeability in the presence and in the absence of oxidative stress; and (4) the effect of pre- and post-treatment with the compounds on the H₂O₂ content in heat-stressed cells. Results showed that HeLa cells expressed AQP1, 3, 8, and 11 proteins. The oxidative stress reduced the water transport, and both pre- and post-treatment with the natural compounds recovering the water permeability, with the exception of curcumin. Moreover, the pre- and post-treatment with all the compounds reduced the H₂O₂ content of heat-stressed cells. This study confirms that oxidative stress reduced water AQP-mediated permeability, reversed by some chemical antioxidant compounds. Moreover, curcumin was shown to regulate AQP gating. This suggests a novel mechanism to regulate cell signaling and survival during stress, and to manipulate key signaling pathways in cancer and degenerative diseases.

Regulation of aquaporin functional properties mediated by the antioxidant effects of natural compounds

Pellavio, Giorgia;Rui, Marta;Martino, Emanuela;Gastaldi, Giulia;Collina, Simona;Laforenza, Umberto
2017-01-01

Abstract

Some aquaporins (AQPs) have been recently demonstrated to facilitate the diffusion of hydrogen peroxide (H₂O₂) from the producing cells to the extracellular fluid, and their reactive oxygen species scavenging properties have been defined. Nevertheless, the identification of different AQPs acting as peroxiporins, their functional role in eustress and distress, and the identification of antioxidant compounds able to regulate AQP gating, remain unsolved. This study aims to investigate, in HeLa cells: (1) the expression of different AQPs; (2) the evaluation of naringenin, quercetin, (R)-aloesaponol III 8-methyl ether, marrubiin, and curcumin antioxidant profiles, via α,α-diphenyl-β-picrylhydrazyl assay; (3) the effect of the compounds on the water permeability in the presence and in the absence of oxidative stress; and (4) the effect of pre- and post-treatment with the compounds on the H₂O₂ content in heat-stressed cells. Results showed that HeLa cells expressed AQP1, 3, 8, and 11 proteins. The oxidative stress reduced the water transport, and both pre- and post-treatment with the natural compounds recovering the water permeability, with the exception of curcumin. Moreover, the pre- and post-treatment with all the compounds reduced the H₂O₂ content of heat-stressed cells. This study confirms that oxidative stress reduced water AQP-mediated permeability, reversed by some chemical antioxidant compounds. Moreover, curcumin was shown to regulate AQP gating. This suggests a novel mechanism to regulate cell signaling and survival during stress, and to manipulate key signaling pathways in cancer and degenerative diseases.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1207988
Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 29
social impact