In the recent years, cluster structures have been evidenced in many ground and excited states of light nuclei [1, 2]. The decay of highly excited states of 24Mg is studied in fusion evaporation events completely detected in charge in the reactions 12C+12C and 14N+10B at 95 and 80 MeV incident energy, respectively, and compared to the results of a pure statistical model [3, 4]. Inclusive variables are in general well reproduced by the model. We found clear deviations from the statistical model if we select emission channels involving multiple α particles which are more probable than expected from a purely statistical behavior. Data from 12C+12C reaction have been analyzed in order to study the decay of the Hoyle state of 12C* with two different selections: peripheral binary collisions and 6α decay channel in central events. To continue the investigation on light systems, we have recently measured the 16O+12C reaction at three different beam energies, namely Ebeam = 90, 110 and 130 MeV. Preliminary results are presented.
Clustering effects in fusion evaporation reactions with light even-even N=Z nuclei. the24Mg and28Si cases
Baiocco, G.;
2016-01-01
Abstract
In the recent years, cluster structures have been evidenced in many ground and excited states of light nuclei [1, 2]. The decay of highly excited states of 24Mg is studied in fusion evaporation events completely detected in charge in the reactions 12C+12C and 14N+10B at 95 and 80 MeV incident energy, respectively, and compared to the results of a pure statistical model [3, 4]. Inclusive variables are in general well reproduced by the model. We found clear deviations from the statistical model if we select emission channels involving multiple α particles which are more probable than expected from a purely statistical behavior. Data from 12C+12C reaction have been analyzed in order to study the decay of the Hoyle state of 12C* with two different selections: peripheral binary collisions and 6α decay channel in central events. To continue the investigation on light systems, we have recently measured the 16O+12C reaction at three different beam energies, namely Ebeam = 90, 110 and 130 MeV. Preliminary results are presented.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.