In this paper we present a monolithic microsystem, which can perform Bio-Impedance Analysis (BIA), and electro impedance tomography (EIT) measurements as well as record electrocardiogram (ECG) signals. In contrast to a full analog lockin approach, a mixed analog/digital solution is adopted. The proposed solution has been designed, implemented and tested using a commercial 0.35-μm CMOS technology. The tuning range of the signal generator and the detector is from 10kHz to 10MHz in 1kHz steps. The circuit ensures a CMRR of 81dB@10kHz, which increases to 84dB@10MHz. The measured equivalent input noise power spectral density is en=2.57nV/√Hz at 10kHz in the worst case, close to the 1/f corner frequency. It decreases until en=1.8nV/√Hz at 1MHz and en=1.9nV/√Hz at 10MHz. Measurements of a reference RC network performed with the proposed monolithic solution and compared with a Keysight E4980A Precision LCR Meter shows a maximal relative error of 0.8% over the whole operating frequency range.
CMOS-Based Multifrequency Impedance Analyzer for Biomedical Applications
D. Allegri;P. Malcovati;
2018-01-01
Abstract
In this paper we present a monolithic microsystem, which can perform Bio-Impedance Analysis (BIA), and electro impedance tomography (EIT) measurements as well as record electrocardiogram (ECG) signals. In contrast to a full analog lockin approach, a mixed analog/digital solution is adopted. The proposed solution has been designed, implemented and tested using a commercial 0.35-μm CMOS technology. The tuning range of the signal generator and the detector is from 10kHz to 10MHz in 1kHz steps. The circuit ensures a CMRR of 81dB@10kHz, which increases to 84dB@10MHz. The measured equivalent input noise power spectral density is en=2.57nV/√Hz at 10kHz in the worst case, close to the 1/f corner frequency. It decreases until en=1.8nV/√Hz at 1MHz and en=1.9nV/√Hz at 10MHz. Measurements of a reference RC network performed with the proposed monolithic solution and compared with a Keysight E4980A Precision LCR Meter shows a maximal relative error of 0.8% over the whole operating frequency range.File | Dimensione | Formato | |
---|---|---|---|
TBCAS2867172.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
4.5 MB
Formato
Adobe PDF
|
4.5 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.