The precise delineation of brain cancer is a crucial task during surgery. There are several techniques employed during surgical procedures to guide neurosurgeons in the tumor resection. However, hyperspectral imaging (HSI) is a promising non-invasive and non-ionizing imaging technique that could improve and complement the currently used methods. The HypErspectraL Imaging Cancer Detection (HELICoiD) European project has addressed the development of a methodology for tumor tissue detection and delineation exploiting HSI techniques. In this approach, the K-means algorithm emerged in the delimitation of tumor borders, which is of crucial importance. The main drawback is the computational complexity of this algorithm. This paper describes the development of the K-means clustering algorithm on different parallel architectures, in order to provide real-time processing during surgical procedures. This algorithm will generate an unsupervised segmentation map that, combined with a supervised classification map, will offer guidance to the neurosurgeon during the tumor resection task. We present parallel K-means clustering based on OpenMP, CUDA and OpenCL paradigms. These algorithms have been validated through an in-vivo hyperspectral human brain image database. Experimental results show that the CUDA version can achieve a speed-up of ~150 with respect to a sequential processing. The remarkable result obtained in this paper makes possible the development of a real-time classification system.

Parallel K-Means Clustering for Brain Cancer Detection Using Hyperspectral Images

Emanuele Torti
;
FLORIMBI, GIORDANA;MARRERO CALLICO', GUSTAVO IVAN;Francesco Leporati
2018-01-01

Abstract

The precise delineation of brain cancer is a crucial task during surgery. There are several techniques employed during surgical procedures to guide neurosurgeons in the tumor resection. However, hyperspectral imaging (HSI) is a promising non-invasive and non-ionizing imaging technique that could improve and complement the currently used methods. The HypErspectraL Imaging Cancer Detection (HELICoiD) European project has addressed the development of a methodology for tumor tissue detection and delineation exploiting HSI techniques. In this approach, the K-means algorithm emerged in the delimitation of tumor borders, which is of crucial importance. The main drawback is the computational complexity of this algorithm. This paper describes the development of the K-means clustering algorithm on different parallel architectures, in order to provide real-time processing during surgical procedures. This algorithm will generate an unsupervised segmentation map that, combined with a supervised classification map, will offer guidance to the neurosurgeon during the tumor resection task. We present parallel K-means clustering based on OpenMP, CUDA and OpenCL paradigms. These algorithms have been validated through an in-vivo hyperspectral human brain image database. Experimental results show that the CUDA version can achieve a speed-up of ~150 with respect to a sequential processing. The remarkable result obtained in this paper makes possible the development of a real-time classification system.
File in questo prodotto:
File Dimensione Formato  
paper_K_means.pdf

accesso aperto

Descrizione: File in pre-print
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 896.66 kB
Formato Adobe PDF
896.66 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1226810
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 23
social impact