Grating couplers are widely used optical interfaces in integrated photonics, especially on the Silicon-On-Insulator (SOI) platform. Their design has been optimized for coupling light between a Photonic Integrated Circuit (PIC) and a single-mode fiber, a lens for free space transport, or even a second PIC in the same SOI platform. In this work, we co-design matching pairs of grating-couplers on distinct SOI and InP photonic platforms for optimized PIC-to-PIC coupling. By matching the scattering strengths of the two grating-couplers, we show that a PIC-to-PIC insertion loss of 3dB can be achieved. We also investigate how the design parameters impact the coupling efficiency and the bandwidth, ending up with a tolerance analysis. The proposed coupling approach between two different waveguide materials has prospective applications for the hybrid-integration of SOI and InP photonic platforms for communication technologies.
Co-optimizing grating couplers for hybrid integration of InP and SOI photonic platforms
PASSONI, MARCO;Floris, F.;Carroll, L.;Andreani, L. C.;
2018-01-01
Abstract
Grating couplers are widely used optical interfaces in integrated photonics, especially on the Silicon-On-Insulator (SOI) platform. Their design has been optimized for coupling light between a Photonic Integrated Circuit (PIC) and a single-mode fiber, a lens for free space transport, or even a second PIC in the same SOI platform. In this work, we co-design matching pairs of grating-couplers on distinct SOI and InP photonic platforms for optimized PIC-to-PIC coupling. By matching the scattering strengths of the two grating-couplers, we show that a PIC-to-PIC insertion loss of 3dB can be achieved. We also investigate how the design parameters impact the coupling efficiency and the bandwidth, ending up with a tolerance analysis. The proposed coupling approach between two different waveguide materials has prospective applications for the hybrid-integration of SOI and InP photonic platforms for communication technologies.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.