Predicting Diabetes Type 2 Mellitus (T2DM) complications such as retinopathy and liver disease is still a challenge despite being a growing public health concern worldwide. This is due to the complex interactions between complications and other features, as well as between the different complications, themselves. What is more, there are likely to be many unmeasured effects that impact the disease progression of different patients. Probabilistic graphical models such as Dynamic Bayesian Networks (DBNs) have demonstrated much promise in the modeling of disease progression and they can naturally incorporate hidden (latent) variables using the EM algorithm. Unlike deep learning approaches that attempt to model complex interactions in data by using a large number of hidden variables, we adopt a different approach. We are interested in models that not only capture unmeasured effects but are also transparent in how they model data so that knowledge about disease processes can be extracted and trust in the model can be maintained by clinicians. As a result, we have developed a step-wise hidden variable structure learning process that incrementally adds hidden variables based on the IC∗ algorithm. To the best of our knowledge, this is the first study for classifying disease complication using a step-wise learning methodology for identifying hidden and T2DM features with a DBN structure from clinical data. Our extensive set of experiments show that the proposed method improves classification accuracy, identifying the correct number of hidden variables, and targeting their precise location within the network structure.

Predicting Disease Complications Using a Stepwise Hidden Variable Approach for Learning Dynamic Bayesian Networks

Bellazzi, Riccardo
Supervision
;
Chiovato, Luca
Supervision
2018-01-01

Abstract

Predicting Diabetes Type 2 Mellitus (T2DM) complications such as retinopathy and liver disease is still a challenge despite being a growing public health concern worldwide. This is due to the complex interactions between complications and other features, as well as between the different complications, themselves. What is more, there are likely to be many unmeasured effects that impact the disease progression of different patients. Probabilistic graphical models such as Dynamic Bayesian Networks (DBNs) have demonstrated much promise in the modeling of disease progression and they can naturally incorporate hidden (latent) variables using the EM algorithm. Unlike deep learning approaches that attempt to model complex interactions in data by using a large number of hidden variables, we adopt a different approach. We are interested in models that not only capture unmeasured effects but are also transparent in how they model data so that knowledge about disease processes can be extracted and trust in the model can be maintained by clinicians. As a result, we have developed a step-wise hidden variable structure learning process that incrementally adds hidden variables based on the IC∗ algorithm. To the best of our knowledge, this is the first study for classifying disease complication using a step-wise learning methodology for identifying hidden and T2DM features with a DBN structure from clinical data. Our extensive set of experiments show that the proposed method improves classification accuracy, identifying the correct number of hidden variables, and targeting their precise location within the network structure.
2018
9781538660607
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1260209
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact