Anthracenenitrile oxide undergoes 1,3-dipolar cycloaddition reaction with propargyl bromide affording the expected isoxazole as single regioisomer, suitably synthetically elaborated and functionalized with a protected triple bond. The introduction of a bromine atom at the position C10 of the anthracene moiety allows for inserting a variety of aromatic and heterocyclic substituents through Suzuki coupling. A two-way synthetic route can lead to simple isoxazole derivatives or, after N@O bond reductive cleavage and BF3 complexation, enamino ketone boron complexes. The photophysical properties of both the substituted isoxazoles and the corresponding boron complexes were investigated to show the potentialities for the employment as fluorescent tags in imaging techniques. The quite good quantum yield values confirm the suitability of these compounds in the cellular environment. Scope and limitations of the methodology are discussed.

Fluorescent Probes from Aromatic Polycyclic Nitrile Oxides: Isoxazoles versus Dihydro-1λ3,3,2λ4-Oxazaborinines

MOIOLA, MATTIA
Investigation
;
CRESPI, STEFANO
Investigation
;
Memeo, Misal G.
Conceptualization
;
Mella, Mariella
Validation
;
Quadrelli, Paolo
Writing – Original Draft Preparation
2019-01-01

Abstract

Anthracenenitrile oxide undergoes 1,3-dipolar cycloaddition reaction with propargyl bromide affording the expected isoxazole as single regioisomer, suitably synthetically elaborated and functionalized with a protected triple bond. The introduction of a bromine atom at the position C10 of the anthracene moiety allows for inserting a variety of aromatic and heterocyclic substituents through Suzuki coupling. A two-way synthetic route can lead to simple isoxazole derivatives or, after N@O bond reductive cleavage and BF3 complexation, enamino ketone boron complexes. The photophysical properties of both the substituted isoxazoles and the corresponding boron complexes were investigated to show the potentialities for the employment as fluorescent tags in imaging techniques. The quite good quantum yield values confirm the suitability of these compounds in the cellular environment. Scope and limitations of the methodology are discussed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1268046
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact