This paper presents a novel method to compute the exact Kantorovich-Wasserstein distance between a pair of d-dimensional histograms having n bins each. We prove that this problem is equivalent to an uncapacitated minimum cost flow problem on a (d + 1)-partite graph with (d + 1)n nodes and dn^((d+1)/d) arcs, whenever the cost is separable along the principal d-dimensional directions. We show numerically the benefits of our approach by computing the Kantorovich-Wasserstein distance of order 2 among two sets of instances: gray scale images and d-dimensional bio medical histograms. On these types of instances, our approach is competitive with state-of-the-art optimal transport algorithms.
Computing Kantorovich-Wasserstein Distances on d-dimensional histograms using (d + 1)-partite graphs
Auricchio G.;Gualandi S.
;Veneroni M.;Bassetti F.
2018-01-01
Abstract
This paper presents a novel method to compute the exact Kantorovich-Wasserstein distance between a pair of d-dimensional histograms having n bins each. We prove that this problem is equivalent to an uncapacitated minimum cost flow problem on a (d + 1)-partite graph with (d + 1)n nodes and dn^((d+1)/d) arcs, whenever the cost is separable along the principal d-dimensional directions. We show numerically the benefits of our approach by computing the Kantorovich-Wasserstein distance of order 2 among two sets of instances: gray scale images and d-dimensional bio medical histograms. On these types of instances, our approach is competitive with state-of-the-art optimal transport algorithms.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.