Groundwater contamination is a major issue for human health, due to its largely diffused exploitation for water supply. Several pollutants have been detected in groundwater; amongst them arsenic, cadmium, chromium, vanadium, and perchlorate. Various technologies have been applied for groundwater remediation, involving physical, chemical, and biological processes. Bioelectrochemical systems (BES) have emerged over the last 15 years as an alternative to conventional treatments for a wide variety of wastewater, and have been proposed as a feasible option for groundwater remediation due to the nature of the technology: the presence of two different redox environments, the use of electrodes as virtually inexhaustible electron acceptor/donor (anode and cathode, respectively), and the possibility of microbial catalysis enhance their possibility to achieve complete remediation of contaminants, even in combination. Arsenic and organic matter can be oxidized at the bioanode, while vanadium, perchlorate, chromium, and cadmium can be reduced at the cathode, which can be biotic or abiotic. Additionally, BES has been shown to produce bioenergy while performing organic contaminants removal, lowering the overall energy balance. This review examines the application of BES for groundwater remediation of arsenic, cadmium, chromium, vanadium, and perchlorate, focusing also on the perspectives of the technology in the groundwater treatment field
Bioelectrochemical systems for removal of selected metals and perchlorate from groundwater: A review
Cecconet D.
;Callegari A.;Capodaglio A. G.
2018-01-01
Abstract
Groundwater contamination is a major issue for human health, due to its largely diffused exploitation for water supply. Several pollutants have been detected in groundwater; amongst them arsenic, cadmium, chromium, vanadium, and perchlorate. Various technologies have been applied for groundwater remediation, involving physical, chemical, and biological processes. Bioelectrochemical systems (BES) have emerged over the last 15 years as an alternative to conventional treatments for a wide variety of wastewater, and have been proposed as a feasible option for groundwater remediation due to the nature of the technology: the presence of two different redox environments, the use of electrodes as virtually inexhaustible electron acceptor/donor (anode and cathode, respectively), and the possibility of microbial catalysis enhance their possibility to achieve complete remediation of contaminants, even in combination. Arsenic and organic matter can be oxidized at the bioanode, while vanadium, perchlorate, chromium, and cadmium can be reduced at the cathode, which can be biotic or abiotic. Additionally, BES has been shown to produce bioenergy while performing organic contaminants removal, lowering the overall energy balance. This review examines the application of BES for groundwater remediation of arsenic, cadmium, chromium, vanadium, and perchlorate, focusing also on the perspectives of the technology in the groundwater treatment fieldI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.