In this paper we study the second fundamental form of the Prym map Pg,r : R_{g,r} → A^δ_{g−1+r} in the ramified case r > 0. We give an expression of it in terms of the second fundamental form of the Torelli map of the covering curves. We use this expression to give an upper bound for the dimension of a germ of a totally geodesic submanifold, and hence of a Shimura subvariety of A^δ_{g−1+r} , contained in the Prym locus.

Second fundamental form of the Prym map in the ramified case

Paola Frediani
2020-01-01

Abstract

In this paper we study the second fundamental form of the Prym map Pg,r : R_{g,r} → A^δ_{g−1+r} in the ramified case r > 0. We give an expression of it in terms of the second fundamental form of the Torelli map of the covering curves. We use this expression to give an upper bound for the dimension of a germ of a totally geodesic submanifold, and hence of a Shimura subvariety of A^δ_{g−1+r} , contained in the Prym locus.
2020
SPRINGER PROCEEDINGS IN MATHEMATICS & STATISTICS
978-3-030-51794-6
978-3-030-51795-3
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1287586
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact