A mixer-first wideband receiver with RF bandwidth of 260 MHz suitable for the 5G lower frequency band (below 6 GHz) is presented. The filtering trans-impedance amplifier immediately following the mixer is based on a regulated cascode, instead of a conventional shunt-feedback architecture. Thanks to a positive-feedback capacitance multiplication, third-order low-pass filtering in the current domain is performed. Wide bandwidth, high linearity, and low power are thus achieved. Measurements on a 28-nm CMOS chip prototype show alternate channel IIP3 and P1dB of +22 dBm and +3 dBm, respectively. RX NF is 5.5 dB while power consumption is 21.6 mW (signal path) and 7.8-mW/GHz (LO) with 1.8/1.2-V supply.

A 260-MHz RF Bandwidth Mixer-First Receiver with Third-Order Current-Mode Filtering TIA

Pini G.;Manstretta D.;Castello R.
2019-01-01

Abstract

A mixer-first wideband receiver with RF bandwidth of 260 MHz suitable for the 5G lower frequency band (below 6 GHz) is presented. The filtering trans-impedance amplifier immediately following the mixer is based on a regulated cascode, instead of a conventional shunt-feedback architecture. Thanks to a positive-feedback capacitance multiplication, third-order low-pass filtering in the current domain is performed. Wide bandwidth, high linearity, and low power are thus achieved. Measurements on a 28-nm CMOS chip prototype show alternate channel IIP3 and P1dB of +22 dBm and +3 dBm, respectively. RX NF is 5.5 dB while power consumption is 21.6 mW (signal path) and 7.8-mW/GHz (LO) with 1.8/1.2-V supply.
2019
978-1-7281-1550-4
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1315046
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact