We report on a thrombocytopenic female belonging to a pedigree with the Wiskott-Aldrich syndrome (WAS). Restriction fragment length polymorphism (RFLP) analysis with probe M27 beta, closely linked to the WAS gene, demonstrated that she is a carrier of WAS. Both small-sized and normal-sized platelets were present, suggesting that, unlike the vast majority of WAS carriers, she does not manifest nonrandom X-chromosome inactivation in the thrombopoietic cell lineage. Study of X-chromosome inactivation by means of RFLP and methylation analysis demonstrated that the pattern of X-chromosome inactivation was nonrandom in T lymphocytes, but random in granulocytes. While this is the first complete report on the occurrence of thrombocytopenia in a carrier female of WAS as the result of atypical lyonization, it also suggests that expression of the WAS gene occurs at (or extends up to) a later stage than the multipotent stem cell along the hematopoietic differentiation pathway.
Analysis of X-chromosome inactivation and presumptive expression of the Wiskott-Aldrich syndrome (WAS) gene in hematopoietic cell lineages of a thrombocytopenic carrier female of WAS.
LOCATELLI, FRANCO;MARCONI, MASSIMO;
1991-01-01
Abstract
We report on a thrombocytopenic female belonging to a pedigree with the Wiskott-Aldrich syndrome (WAS). Restriction fragment length polymorphism (RFLP) analysis with probe M27 beta, closely linked to the WAS gene, demonstrated that she is a carrier of WAS. Both small-sized and normal-sized platelets were present, suggesting that, unlike the vast majority of WAS carriers, she does not manifest nonrandom X-chromosome inactivation in the thrombopoietic cell lineage. Study of X-chromosome inactivation by means of RFLP and methylation analysis demonstrated that the pattern of X-chromosome inactivation was nonrandom in T lymphocytes, but random in granulocytes. While this is the first complete report on the occurrence of thrombocytopenia in a carrier female of WAS as the result of atypical lyonization, it also suggests that expression of the WAS gene occurs at (or extends up to) a later stage than the multipotent stem cell along the hematopoietic differentiation pathway.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.