Chemotherapy for colorectal cancer may lower muscle protein synthesis and increase oxidative stress. We hypothesize that chemotherapy may worsen plasma amino acids (AAs) and markers of oxidative stress (MOS). Therefore, this study aimed to document plasma AAs and MOS before, during and after chemotherapy in colorectal cancer (CRC) surgery patients. Fourteen normal-weight CRC patients were enrolled one month after surgery and scheduled for oxaliplatin-fluoropyrimidine combination (XELOX) therapy. Venous blood samples for AA and MOS (malondialdehyde, MDA; 8-hydroxy-2’-deoxyguanosine, 8-OHdG) measurements were drawn in fasting patients before each oxaliplatin infusion at initiation (A), 1 month (B) and 3 months (C) of the therapy, and after XELOX had finished (6 months, D). The results showed that during XELOX therapy (from phase B to phase D), in comparison to baseline (phase A), the branched chain amino acid/essential amino acid ratio, branched chain amino acids expressed as a percentage of total AAs, and arginine expressed as a percentage of total AAs significantly decreased (p = 0.017, p = 0.028, p = 0.028, respectively). Plasma levels of MOS did not change significantly. This study indicates that XELOX therapy does not affect plasma AA levels or worsen oxidative stress.
Oxaliplatin-fluoropyrimidine combination (XELOX) therapy does not affect plasma amino acid levels and plasma markers of oxidative stress in colorectal cancer surgery patients: A pilot study
Dossena M.;Buonocore D.;Boschi F.;Simeti E.;Condino A. M.;Verri M.
2019-01-01
Abstract
Chemotherapy for colorectal cancer may lower muscle protein synthesis and increase oxidative stress. We hypothesize that chemotherapy may worsen plasma amino acids (AAs) and markers of oxidative stress (MOS). Therefore, this study aimed to document plasma AAs and MOS before, during and after chemotherapy in colorectal cancer (CRC) surgery patients. Fourteen normal-weight CRC patients were enrolled one month after surgery and scheduled for oxaliplatin-fluoropyrimidine combination (XELOX) therapy. Venous blood samples for AA and MOS (malondialdehyde, MDA; 8-hydroxy-2’-deoxyguanosine, 8-OHdG) measurements were drawn in fasting patients before each oxaliplatin infusion at initiation (A), 1 month (B) and 3 months (C) of the therapy, and after XELOX had finished (6 months, D). The results showed that during XELOX therapy (from phase B to phase D), in comparison to baseline (phase A), the branched chain amino acid/essential amino acid ratio, branched chain amino acids expressed as a percentage of total AAs, and arginine expressed as a percentage of total AAs significantly decreased (p = 0.017, p = 0.028, p = 0.028, respectively). Plasma levels of MOS did not change significantly. This study indicates that XELOX therapy does not affect plasma AA levels or worsen oxidative stress.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.