This brief presents a novel estimation scheme for power grids based on distributed observers. Assuming only the generator voltage phase angles are measured and the electrical load active power demands are specified, we design an observer for each bus of the power grid, exploiting only knowledge of local information about the power system. In particular, we propose a super-twisting-like sliding mode observer to estimate the frequency deviation for each generator bus and a so-called algebraic observer to estimate the load voltage phase angle for each load bus based on distributed iterative algorithms. The observer-based estimation scheme is validated by considering the IEEE 39 bus SimPowerSystems model.

Design and Validation of a Distributed Observer-Based Estimation Scheme for Power Grids

Rinaldi G.;Ferrara A.
2020-01-01

Abstract

This brief presents a novel estimation scheme for power grids based on distributed observers. Assuming only the generator voltage phase angles are measured and the electrical load active power demands are specified, we design an observer for each bus of the power grid, exploiting only knowledge of local information about the power system. In particular, we propose a super-twisting-like sliding mode observer to estimate the frequency deviation for each generator bus and a so-called algebraic observer to estimate the load voltage phase angle for each load bus based on distributed iterative algorithms. The observer-based estimation scheme is validated by considering the IEEE 39 bus SimPowerSystems model.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1322746
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact