Realizing multiply resonant photonic crystal cavities with large free spectral range is key to achieve integrated devices with highly efficient nonlinear response, such as frequency conversion, four-wave mixing, and parametric oscillation. This task is typically difficult owing to the cavity modes' sensitivity to fabrication disorder, which makes it hard to reliably achieve a comb-like spectrum of equally spaced modes even when a perfect matching is theoretically predicted. Here we show that a comb-like spectrum of up to eight modes with very high quality factor and diffraction limited volumes can be engineered in the bichromatic-type potential of a two-dimensional photonic crystal cavity fabricated in a thin silicon membrane. To cope with the tight tolerance in terms of frequency spacings and resonance linewidths, we develop a permanent post-processing technique that allows the selective tuning of individual confined modes, thus achieving an almost perfect frequency matching of high Q resonances with record finesse in silicon microresonators. Our experimental results are extremely promising in view of ultra-low power nonlinear photonics in silicon.

Selective tuning of optical modes in a silicon comb-like photonic crystal cavity

Clementi M.;Barone A.;Gerace D.;Galli M.
2019-01-01

Abstract

Realizing multiply resonant photonic crystal cavities with large free spectral range is key to achieve integrated devices with highly efficient nonlinear response, such as frequency conversion, four-wave mixing, and parametric oscillation. This task is typically difficult owing to the cavity modes' sensitivity to fabrication disorder, which makes it hard to reliably achieve a comb-like spectrum of equally spaced modes even when a perfect matching is theoretically predicted. Here we show that a comb-like spectrum of up to eight modes with very high quality factor and diffraction limited volumes can be engineered in the bichromatic-type potential of a two-dimensional photonic crystal cavity fabricated in a thin silicon membrane. To cope with the tight tolerance in terms of frequency spacings and resonance linewidths, we develop a permanent post-processing technique that allows the selective tuning of individual confined modes, thus achieving an almost perfect frequency matching of high Q resonances with record finesse in silicon microresonators. Our experimental results are extremely promising in view of ultra-low power nonlinear photonics in silicon.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1337326
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 14
social impact