This letter proposes a hybrid control methodology to achieve full body collision avoidance in anthropomorphic robot manipulators. The proposal improves classical motion planning algorithms by introducing a Deep Reinforcement Learning (DRL) approach trained ad hoc for performing obstacle avoidance, while achieving a reaching task in the operative space. More specifically, a switching mechanism is enabled whenever a condition of proximity to the obstacles is met, thus conferring to the dual-mode architecture a self-configuring capability in order to cope with objects unexpectedly invading the workspace. The proposal has been finally tested relying on a realistic robot manipulator simulated in a V-REP environment.

Self-Configuring Robot Path Planning With Obstacle Avoidance via Deep Reinforcement Learning

Sangiovanni, B;Piastra, M;Ferrara, A
2021-01-01

Abstract

This letter proposes a hybrid control methodology to achieve full body collision avoidance in anthropomorphic robot manipulators. The proposal improves classical motion planning algorithms by introducing a Deep Reinforcement Learning (DRL) approach trained ad hoc for performing obstacle avoidance, while achieving a reaching task in the operative space. More specifically, a switching mechanism is enabled whenever a condition of proximity to the obstacles is met, thus conferring to the dual-mode architecture a self-configuring capability in order to cope with objects unexpectedly invading the workspace. The proposal has been finally tested relying on a realistic robot manipulator simulated in a V-REP environment.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1348559
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 75
  • ???jsp.display-item.citation.isi??? 58
social impact