This letter proposes a hybrid control methodology to achieve full body collision avoidance in anthropomorphic robot manipulators. The proposal improves classical motion planning algorithms by introducing a Deep Reinforcement Learning (DRL) approach trained ad hoc for performing obstacle avoidance, while achieving a reaching task in the operative space. More specifically, a switching mechanism is enabled whenever a condition of proximity to the obstacles is met, thus conferring to the dual-mode architecture a self-configuring capability in order to cope with objects unexpectedly invading the workspace. The proposal has been finally tested relying on a realistic robot manipulator simulated in a V-REP environment.
Self-Configuring Robot Path Planning With Obstacle Avoidance via Deep Reinforcement Learning
Sangiovanni, B;Piastra, M;Ferrara, A
2021-01-01
Abstract
This letter proposes a hybrid control methodology to achieve full body collision avoidance in anthropomorphic robot manipulators. The proposal improves classical motion planning algorithms by introducing a Deep Reinforcement Learning (DRL) approach trained ad hoc for performing obstacle avoidance, while achieving a reaching task in the operative space. More specifically, a switching mechanism is enabled whenever a condition of proximity to the obstacles is met, thus conferring to the dual-mode architecture a self-configuring capability in order to cope with objects unexpectedly invading the workspace. The proposal has been finally tested relying on a realistic robot manipulator simulated in a V-REP environment.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.