Diseases are often umbrella terms for many subcategories of disease. The identification of these subcategories is vital if we are to develop personalised treatments that are better focussed on individual patients. In this short paper, we explore the use of a combination of unsupervised learning to identify potential subclasses, and supervised learning to build models for better predicting a number of different health outcomes for patients that suffer from systemic sclerosis, a rare chronic connective tissue disorder - but one that shares many characteristics with other diseases. We explore a number of different algorithms for constructing models that simultaneously predict health outcomes and identify subcategories.

Combining unsupervised and supervised learning for discovering disease subclasses

Bosoni P.;Bellazzi R.;
2016-01-01

Abstract

Diseases are often umbrella terms for many subcategories of disease. The identification of these subcategories is vital if we are to develop personalised treatments that are better focussed on individual patients. In this short paper, we explore the use of a combination of unsupervised learning to identify potential subclasses, and supervised learning to build models for better predicting a number of different health outcomes for patients that suffer from systemic sclerosis, a rare chronic connective tissue disorder - but one that shares many characteristics with other diseases. We explore a number of different algorithms for constructing models that simultaneously predict health outcomes and identify subcategories.
2016
978-1-4673-9036-1
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1349276
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact