There is a great deal of debate over the importance of explanation in AI models inferred from health data. In particular, there is a balance that needs to be made between the accuracy of complex 'deep' models such as convolutional neural networks and the transparency of models that aim to model data in a more 'human' way such as expert systems. In this paper, we explore the use of temporal association rules to validate and uncover the meaning behind discrete hidden variables that have been inferred from clinical diabetes data. We use a recently published technique based upon the IC∗ (Induction Causation) algorithm that limits the number of hidden variables and places them within a network structure. Here, we take the hidden variables and compare their underlying discrete states to clusters that have been generated from temporal association rules. This allows us to characterise the hidden states based upon different sequences of complications. Results are very promising, with many hidden states aligning with the discovered clusters giving us a direct interpretation.

Opening the black box: Exploring temporal pattern of type 2 diabetes complications in patient clustering using association rules and hidden variable discovery

Sacchi L.;Chiovato L.;
2019-01-01

Abstract

There is a great deal of debate over the importance of explanation in AI models inferred from health data. In particular, there is a balance that needs to be made between the accuracy of complex 'deep' models such as convolutional neural networks and the transparency of models that aim to model data in a more 'human' way such as expert systems. In this paper, we explore the use of temporal association rules to validate and uncover the meaning behind discrete hidden variables that have been inferred from clinical diabetes data. We use a recently published technique based upon the IC∗ (Induction Causation) algorithm that limits the number of hidden variables and places them within a network structure. Here, we take the hidden variables and compare their underlying discrete states to clusters that have been generated from temporal association rules. This allows us to characterise the hidden states based upon different sequences of complications. Results are very promising, with many hidden states aligning with the discovered clusters giving us a direct interpretation.
2019
978-1-7281-2286-1
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1349384
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact