BACKGROUND AND PURPOSE: Nitric oxide (NO) and vasoactive intestinal peptide (VIP) are considered transmitters of non-adrenergic, non-cholinergic (NANC) relaxations in guinea-pig trachea, whereas the role of carbon monoxide (CO) is unknown. This study was designed to assess the participation of CO, and to investigate the localization of haem oxygenase-2 (HO-2), the CO-producing enzyme, in tracheal neurons. EXPERIMENTAL APPROACH: NANC responses to electrical field stimulation (EFS) at 3 and 10 Hz were evaluated in epithelium-free whole tracheal segments as intraluminal pressure changes. Drugs used were: L-nitroarginine methyl ester (L-NAME, 100 microM) to inhibit NO synthase (NOS), alpha-chymotrypsin (2 U ml(-1)) to inactivate VIP, zinc protoporphyrin-IX (ZnPP-IX, 10 microM) to inhibit HO-2, and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 microM), a soluble guanylyl cyclase inhibitor. For immunohistochemistry, tissues were exposed to antibodies to PGP 9.5, a general neuronal marker, HO-2 and NOS, and processed with an indirect immunofluorescence method.Key results:alpha-Chymotrypsin did not affect NANC relaxations. ODQ inhibited NANC responses by about 60%, a value similar to that obtained by combining L-NAME and ZnPP-IX. The combination of ODQ, L-NAME and ZnPP-IX reduced the responses by 90%. Subpopulations of HO-2 positive neurons containing NOS were detected in tracheal sections. CONCLUSIONS AND IMPLICATIONS: In the guinea-pig trachea, NANC inhibitory responses at 3 and 10 Hz use NO and CO as main transmitters. Their participation is revealed following inhibition of NOS, HO-2 and soluble guanylyl cyclase. The involvement of CO as a relaxing transmitter paves the way for novel therapeutic approaches in the treatment of airway obstruction.

Role of carbon monoxide in electrically induced non-adrenergic, non-cholinergic relaxations in the guinea-pig isolated whole trachea

DELLABIANCA, ANTONIO;SACCHI, MARTA;ANSELMI, LAURA;DE AMICI, EMANUELA;CERVIO, ELISABETTA;AGAZZI, ALESSANDRO;TONINI, MARCELLO;CANDURA, STEFANO
2007-01-01

Abstract

BACKGROUND AND PURPOSE: Nitric oxide (NO) and vasoactive intestinal peptide (VIP) are considered transmitters of non-adrenergic, non-cholinergic (NANC) relaxations in guinea-pig trachea, whereas the role of carbon monoxide (CO) is unknown. This study was designed to assess the participation of CO, and to investigate the localization of haem oxygenase-2 (HO-2), the CO-producing enzyme, in tracheal neurons. EXPERIMENTAL APPROACH: NANC responses to electrical field stimulation (EFS) at 3 and 10 Hz were evaluated in epithelium-free whole tracheal segments as intraluminal pressure changes. Drugs used were: L-nitroarginine methyl ester (L-NAME, 100 microM) to inhibit NO synthase (NOS), alpha-chymotrypsin (2 U ml(-1)) to inactivate VIP, zinc protoporphyrin-IX (ZnPP-IX, 10 microM) to inhibit HO-2, and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 10 microM), a soluble guanylyl cyclase inhibitor. For immunohistochemistry, tissues were exposed to antibodies to PGP 9.5, a general neuronal marker, HO-2 and NOS, and processed with an indirect immunofluorescence method.Key results:alpha-Chymotrypsin did not affect NANC relaxations. ODQ inhibited NANC responses by about 60%, a value similar to that obtained by combining L-NAME and ZnPP-IX. The combination of ODQ, L-NAME and ZnPP-IX reduced the responses by 90%. Subpopulations of HO-2 positive neurons containing NOS were detected in tracheal sections. CONCLUSIONS AND IMPLICATIONS: In the guinea-pig trachea, NANC inhibitory responses at 3 and 10 Hz use NO and CO as main transmitters. Their participation is revealed following inhibition of NOS, HO-2 and soluble guanylyl cyclase. The involvement of CO as a relaxing transmitter paves the way for novel therapeutic approaches in the treatment of airway obstruction.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/135072
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact